FastRCNN论文

RCNN首次将CNN引入了目标识别中,但其存在诸多问题。如将训练分成了多阶段,训练过程中耗费了大量的时间和空间以及检测速度过慢等。正是基于这些缺点,RCNN的作者提出了FastRCNN。很明显,FastRCNN的提出就是为了解决这些问题。作者分析了,RCNN速度过慢的问题主要是由于没有"sharing computation",存在过多重复的卷积计算。由此可以想到为什么不可以直接在CNN提取的特征图上利用边界框提取feature?下图为检测流程:

如图所示,在利用CNN提取到feature map之后,不可避免的问题就是feature map的大小与原图大小并不匹配的情况。这里的处理很简单,直接利用相似图形的比例来进行缩放,以获取feature map上的候选框,从而得到不同大小的候选框特征。这里的另外一个问题就是,每个候选框的大小不一样,要想进行识别必须保证输入具有相同的尺寸。在这里没有使用简单的按比例缩放,而是将不同的候选框通过设置不同大小的核的pooling使得每个候选框在下一层输出相同大小的feature map。 在此处Fast RCNN使用的卷积神经网络为普通的fc7,但是有所改动,也有使用VGG16的神经网络。 前五个阶段是conv + relu + pooling的基本形式。

例如要求输出的feature map的大小为w*h,那么对于大小为W*H的feature map,所使用的最大池化的kernel size为[W//w,H//h],

设需要的feature map为[16,16],而候选框的大小为32*64,则使用的最大池化kernel的大小为[2,4]。

通过上面的步骤已经可以得到每一个框的feature,然后再经过两个都是output是4096的全连接层。最后分别经过output个数是21和84的两个全连接层(这两个全连接层是并列的,不是前后关系)。前者是分类的输出,代表每个region proposal属于每个类别的得分。后者是回归的输出,代表每个候选框的四个坐标。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Fast R-CNN是一种基于深度学习的目标检测算法,相比之前的R-CNN和SPP-Net,Fast R-CNN在检测精度和速度上都有明显的提升。以下是Fast R-CNN的实验讲解: 1. 实验数据集 在Fast R-CNN的论文中使用了PASCAL VOC 2007、2010和ILSVRC 2013数据集进行实验。这些数据集是目标检测领域的标准数据集,包含多个类别的图像和对应的标注信息,可以用于训练和测试目标检测算法。 2. 实验结果 在PASCAL VOC 2007测试集上,Fast R-CNN使用VGG-16作为基础网络,检测精度(mAP)达到了66.9%。相比之前的R-CNN和SPP-Net,Fast R-CNN的检测精度提升了近10个百分点。 在ILSVRC 2013检测数据集上,Fast R-CNN使用ZF网络和VGG-16网络进行实验,检测精度分别为31.4%和34.9%,速度也明显快于之前的算法。 3. 实验分析 Fast R-CNN的检测精度和速度都有明显的提升,这主要得益于以下几点: - RoI池化层:Fast R-CNN引入了RoI池化层,可以将不同大小的RoI映射为固定大小的特征图,避免了之前算法中的重复计算和内存浪费。 - 多任务损失函数:Fast R-CNN将分类和回归任务合并为一个多任务损失函数,可以同时优化分类和位置回归两个任务,提高了检测精度。 - 共享卷积特征:Fast R-CNN使用共享的卷积特征,可以避免对每个RoI都进行卷积操作,节省了计算时间和内存。 总的来说,Fast R-CNN算法在目标检测领域取得了很好的效果,为后续的算法研究和应用奠定了基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值