评估DeepLab-v2的分割结果:pixel accuracy、IoU 上篇文章详细记录了deeplab-v2的训练过程,这篇文章记录一下deeplab-v2的评估方法。 deeplab-v2自带了评估代码,在:/new/xxx/DeepLab/deeplab_v2/deeplab-public-ver2/matlab/my_script/主要涉及到三个.m文件,分别是:EvalSegResults.m 程序入口,也是后面要执行的文件,在这个文件开头...
用自己的数据集训练,测试deeplab_v2 用自己的数据集训练Deeplab v2,包括跑通run_pascal.sh 和 run_densecrf.sh两个脚本1. 下载编译deeplab_v2make 部分不做详细介绍了,网上参考的内容也比较多,出错耐心改一下即可。 代码用的是 git clone https://github.com/xmojiao/deeplab_v2.git 之后的目录结构也按照down下来的,无需调整...
边框回归:BoundingBox-Regression(BBR) 为什么要做BoundingBox Regression(BBR)?首先我们先来考虑,RCNN中为什么要做BoundingBox-Regression?Bounding Boxregression是 RCNN中使用的边框回归方法,在RCNN的论文中,作者指出:主要的错误是源于mislocalization。为了解决这个问题,作者使用了bounding box regression。 这个方...
各向同性,各向异性缩放 R-CNN的论文中提到了各向同性,各向异性缩放的概念,这里做一个详细解释:当我们输入一张图片时,我们要搜索出所有可能是物体的区域,R-CNN采用的就是Selective Search方法,通过这个算法我们搜索出2000个候选框。然后从R-CNN的总流程图中可以看到,搜出的候选框是矩形的,而且是大小各不相同。然而CNN对输入图片的大小是有固定的,如果把搜索到的矩形选框不做处理,就扔进CNN中,肯...
R-CNN论文详解(论文翻译) faster-rcnn在深度学习领域算是一篇开创性的论文,对后续产生的而网络有很重要的意义,认真读懂这篇论文,相信也算是深度学习入门了 。今天又重新读了读faster-rcnn,整理了一份阅读笔记,整理的过程使自己对整个深度学习又有了更深的理解。果然论文还是应该多读几遍才能理解的。
FCN制作自己的数据集,训练,测试 FCN从制作自己的数据集,到训练,测试中间感谢很多朋友的帮助!现在整理出来,希望能帮助到更多的人。以voc_fcn8s为例,详细说明一下整个过程。制作数据集:按照voc的数据格式,分为benchmark和VOC2011,benchmark为训练集:VOC2011为测试集,benchmarck在 fcn.berkeleyvision.org/data/sbdd VOC2011在 fcn...
将自己的数据集制作成TFRecord格式 在使用TensorFlow训练神经网络时,首先面临的问题是:网络的输入此篇文章,教大家将自己的数据集制作成TFRecord格式,feed进网络,除了TFRecord格式,TensorFlow也支持其他格式的数据,此处就不再介绍了。建议大家使用TFRecord格式,在后面可以通过api进行多线程的读取文件队列。
python将文件内容按照某列值重新排序 python实现将文件内容按照某一列内容的大小值重新排序。print(''.join(sorted(open('test.txt'), key=lambda s: s.split()[3],reverse=1)))