基于Keras的网红小姐姐相似图像检索

本文介绍了如何使用Keras进行图像识别和相似度计算,通过数据扩张防止过拟合,利用脸部正面化处理增强特征,并构建模型进行网红小姐姐的相似画像检索,最后计算cos相似度来确定图像的相似度。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在学习到的模型中,输入画像用等级分类的话,可以判断哪个网红小姐姐与之相似。本篇则会从全结合层的矢量特征开始,计算cos相似度,然后检索相似的画像。

而且单就图像识别来讲,Keras使用起来比Chainer更方便,所以安装使用Keras框架。

(注:使用Keras框架的另一个原因是"Keras"的五个字母包含在"Kaiser"当中。)

点击获取Python全套零基础资料大礼包

数据扩张

在Keras中,使用了ImageDataGenerator,所以可以轻松扩大数据。

因为随机抽样的画像集有倾向性或偏移,所以很少会去学习相同的全部数据,否则很容易产生过拟合。

(注:whitening的目的是降低输入的冗余性,希望使特征之间相关性较低,且所有特征具有相同的方差。 )

在这里插入图片描述

脸部画像正面化

前文中,面部画面检查出后用dlib,这次我们要进一步提取检查出的面部画面特征,把眼睛和嘴巴的位置正面化后进行仿射变换。因为已经安装了o

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值