Input
First line of the input contains T the number of test case. Then following lines contains T Test cases.
Each case starts with a line containing 3 integers n (1 ≤ n ≤ 40), m (1 ≤ m ≤ 2000) and k (1 ≤ k and 1≤k*n≤100). Next m lines contain description of m roads. Each line contains three integers f, t (0 ≤ f, t <n and f ≠ t) and d (0 ≤ d < 100). That means there is a road of d length from city f to city t. You can assume that there will be at most one road in one direction between two cities.
Output
For each test case output contains 1 integer denoting the minimum unit of money needed to paint roads. In the case it is impossible to paint the roads maintaining the constraints output -1.
Sample Input Output for Sample Input
4
4 8 1 0 1 1 1 0 2 2 3 1 3 2 2 0 2 5 2 0 6 1 3 5 3 1 6
4 8 1 0 1 1 1 0 10 2 3 10 3 2 1 0 2 10 2 0 1 1 3 1 3 1 10
4 8 2 0 1 1 1 0 2 2 3 1 3 2 2 0 2 5 2 0 6 1 3 5 3 1 6
3 4 1 0 1 5 1 0 6 0 2 7 2 0 8 | 6 4 28 -1
|
Problem setter: Abdullah al Mahmud, Special Thanks: Derek Kisman
还记得在匹配中做过的那道吗?同样的给一个带权有向图,找若干个圈,使得每个节点恰好属于一个圈。
这道题题意解析后其实就是使每个节点恰好属于k个圈。
那道题我们拆点后用最优匹配可以做,因为只要求每个点入度与出度为1,而这里要k,简单的最优匹配显然是不能满足了,
所以要用网络流的特性,加上流量的限制后就可以解决这个所谓的多重匹配问题了。
源点和汇点连的边容量为k,二分图中的边容量为1.
最后判断如果最大流量为n*k,则有解,否则无解
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 202 + 10;
const int INF = 1000000000;
struct Edge {
int from, to, cap, flow, cost;
};
struct MCMF {
int n, m, s, t;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn]; // 是否在队列中
int d[maxn]; // Bellman-Ford
int p[maxn]; // 上一条弧
int a[maxn]; // 可改进量
void init(int n) {
this->n = n;
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap, int cost) {
edges.push_back((Edge){from, to, cap, 0, cost});
edges.push_back((Edge){to, from, 0, 0, -cost});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BellmanFord(int s, int t, int &flow,int &cost) {
for(int i = 0; i < n; i++) d[i] = INF;
memset(inq, 0, sizeof(inq));
d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
queue<int> Q;
Q.push(s);
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = 0;
for(int i = 0; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]) { Q.push(e.to); inq[e.to] = 1; }
}
}
}
if(d[t] == INF) return false;//s-t不连通,失败退出
flow += a[t];
//printf("d=%d a=%d\n",d[t],a[t]);
cost += d[t] * a[t];
int u = t;
while(u != s) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
}
// 需要保证初始网络中没有负权圈
int Mincost(int& can,int s, int t) {
int flow = 0,cost = 0;
while(BellmanFord(s, t,flow, cost));
can = flow;
return cost;
}
};
MCMF g;
int main(){
int t,n,m,k;
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&n,&m,&k);
g.init(2*n+2);
int sorce = 2*n,sink = 2*n+1;
for(int i = 0;i < n;i++){
g.AddEdge(sorce,i,k,0);
g.AddEdge(i+n,sink,k,0);
}
for(int i = 0;i < m;i++){
int from,to,dis;
scanf("%d%d%d",&from,&to,&dis);
g.AddEdge(from,to+n,1,dis);
}
int can;
int ans = g.Mincost(can,sorce,sink);
if(can == n*k) printf("%d\n",ans);
else printf("-1\n");
}
return 0;
}