边双连通分量模版

边双连通分量的求法,分两个步骤:先做一次dfs标记出所有的桥,然后再做一次dfs找出边双连通分量。因为边双连通分量是没有公共结点的,所以只要在第二次dfs的时候保证不经过桥即可。

下面的模版是模仿LRJ点双连通模版自己敲的,用了并查集来做双连通分量的标记。使用时注意模版中点的编号是从0~n-1。模板没有考虑重边。

#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;

const int maxn = 1000 + 5;

int pre[maxn],dfs_clock;
vector<int> G[maxn];
int isbridge[maxn][maxn];//判断u-v的边是不是桥

int dfs1(int u,int fa){
    int lowu = pre[u] = ++dfs_clock;
    for(int i = 0;i < G[u].size();i++){
        int v = G[u][i];
        if(!pre[v]){
            int lowv = dfs1(v,u);
            lowu = min(lowu,lowv);
            if(lowv > pre[u]){
                isbridge[u][v] = 1; isbridge[v][u] = 1;
            }
        }
        else if(pre[v] < pre[u] && v != fa){
            lowu = min(lowu,pre[v]);
        }
    }
    return lowu;
}

int fa[maxn],vis[maxn];//fa记录每个点所属的连通分量,vis[] dfs2时用
int find(int x){return x == fa[x]?x:fa[x] = find(fa[x]);}

void dfs2(int u){
    for(int i = 0;i < G[u].size();i++){
        int v = G[u][i];
        if(!vis[v] && !isbridge[u][v]){//点没有被访问过,并且这条边不是桥
            int X = find(u); int Y = find(v);
            if(X != Y) fa[X] = Y;
            vis[v] = 1;
            dfs2(v);
        }
    }
}

void find_bcc(int n){
    memset(pre,0,sizeof(pre));
    memset(isbridge,0,sizeof(isbridge));
    dfs_clock = 0;
    for(int i = 0;i < n;i++)
        if(!pre[i]) dfs1(i,-1);
    memset(vis,0,sizeof(vis));
    for(int i = 0;i < n;i++){
        if(!vis[i]) { vis[i] = 1; dfs2(i); }
    }
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值