边双连通分量的求法,分两个步骤:先做一次dfs标记出所有的桥,然后再做一次dfs找出边双连通分量。因为边双连通分量是没有公共结点的,所以只要在第二次dfs的时候保证不经过桥即可。
下面的模版是模仿LRJ点双连通模版自己敲的,用了并查集来做双连通分量的标记。使用时注意模版中点的编号是从0~n-1。模板没有考虑重边。
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 1000 + 5;
int pre[maxn],dfs_clock;
vector<int> G[maxn];
int isbridge[maxn][maxn];//判断u-v的边是不是桥
int dfs1(int u,int fa){
int lowu = pre[u] = ++dfs_clock;
for(int i = 0;i < G[u].size();i++){
int v = G[u][i];
if(!pre[v]){
int lowv = dfs1(v,u);
lowu = min(lowu,lowv);
if(lowv > pre[u]){
isbridge[u][v] = 1; isbridge[v][u] = 1;
}
}
else if(pre[v] < pre[u] && v != fa){
lowu = min(lowu,pre[v]);
}
}
return lowu;
}
int fa[maxn],vis[maxn];//fa记录每个点所属的连通分量,vis[] dfs2时用
int find(int x){return x == fa[x]?x:fa[x] = find(fa[x]);}
void dfs2(int u){
for(int i = 0;i < G[u].size();i++){
int v = G[u][i];
if(!vis[v] && !isbridge[u][v]){//点没有被访问过,并且这条边不是桥
int X = find(u); int Y = find(v);
if(X != Y) fa[X] = Y;
vis[v] = 1;
dfs2(v);
}
}
}
void find_bcc(int n){
memset(pre,0,sizeof(pre));
memset(isbridge,0,sizeof(isbridge));
dfs_clock = 0;
for(int i = 0;i < n;i++)
if(!pre[i]) dfs1(i,-1);
memset(vis,0,sizeof(vis));
for(int i = 0;i < n;i++){
if(!vis[i]) { vis[i] = 1; dfs2(i); }
}
}