Poj 3255(Dijkstra求次短路)

本文介绍了一种求解从起点到终点的第二短路径的算法。该算法基于Dijkstra算法的思想,通过维护每个节点的最短路径和次短路径,并使用优先队列进行节点的选取,最终找到满足条件的次短路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Roadblocks
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 5564 Accepted: 2111

Description

Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.

The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.

The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).

Input

Line 1: Two space-separated integers: N and R
Lines 2.. R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)

Output

Line 1: The length of the second shortest path between node 1 and node N

Sample Input

4 4
1 2 100
2 4 200
2 3 250
3 4 100

Sample Output

450

Hint

Two routes: 1 -> 2 -> 4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)

Source

USACO 2006 November Gold
Dijkstra求最短路的思想是依次确定尚未确定的定点中距离最小的顶点,求次短路也可以根据这个思路来。关键是要认识到到某个顶点的次短路要么是到其他某个顶点u的最短路再加上u->v的边,要么是到u的次短路再加上u->v的边,因此所需要求的就是所有顶点的最短路和次短路。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<cmath>
#include<queue>
#include<iostream>
using namespace std;
const int maxn = 5000 + 5;
const int INF = 100000000;
typedef long long LL;
typedef pair<int,int> P;

int n,r;
struct edge{
    int to,cost;
};
vector<edge> G[maxn];

int dist[maxn];
int dist2[maxn];

void solve(){
    priority_queue<P,vector<P>,greater<P> > que;
    fill(dist,dist+n,INF);
    fill(dist2,dist2+n,INF);
    dist[0] = 0;
    que.push(P(0,0));

    while(!que.empty()){
        P p = que.top();que.pop();
        int v = p.second,d = p.first;
        if(dist2[v] < d ) continue;
        for(int i = 0;i < G[v].size();i++){
            edge &e = G[v][i];
            int d2 = d + e.cost;
            if(dist[e.to] > d2){
                swap(dist[e.to],d2);
                que.push(P(dist[e.to],e.to));
            }
            if(dist2[e.to] > d2 && dist[e.to] < d2){
                dist2[e.to] = d2;
                que.push(P(dist2[e.to],e.to));
            }
        }
    }
    printf("%d\n",dist2[n-1]);
}

int main(){
    while(scanf("%d%d",&n,&r) != EOF){
        for(int i = 0;i <= n;i++) G[i].clear();
        for(int i = 0;i < r;i++){
            int x,y,z;
            scanf("%d%d%d",&x,&y,&z);
            x--;y--;
            G[x].push_back(edge{y,z});
            G[y].push_back(edge{x,z});
        }
        solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值