Ubuntu16.04 基于anaconda快速配置openface环境—完整过程版
openface是一个基于深度神经网络的开源人脸识别系统。该系统基于谷歌的文章FaceNet: A Unified Embedding for Face Recognition and Clustering。openface是卡内基梅隆大学的 Brandon Amos主导的。
开始前啰嗦几句
配置openface的环境,有好几种方法,但在这里选用的是在anaconda里创建环境,个人感觉相较与其他教程要简单快速很多
先把官方教程亮出来
官方教程毕竟是比较旧的版本了,如果按着他的操作下来会有问题,昨天花了些功夫解决了,拿出来跟大家分享一下,互相学习 :)
一、Anaconda安装
这里简单说一下Anaconda3的安装,已经安装了的可以跳过这一部分。
1)先到官网下载对应的版本,点这里
根据Python版本和系统选择下载。
2)安装
cd Downloads
bash Anaconda3-5.2.0-Linux-x86_64.sh
3)跟着一直按回车阅读那些许可文件即可,到最后会问你同不同意这些许可文件,输入yes
即可。
4)最后还会询问你安装路径,如果没有特殊要求,直接回车安装到默认目录下即可。
到这里就安装完成了。
二、openface环境配置
- 创建一个以openface命名的conda环境
conda create -n openface python=2.7
- 激活上一步创建的环境
source activate openface
- 安装依赖项
conda config --add channels conda-forge
conda install opencv numpy pandas scipy scikit-learn scikit-image dlib txaio twisted autobahn OpenSSL pyopenssl imagehash service_identity
- 退出激活环境
source deactivate
- 安装Torch
安装地址是/home/uesrname/torch
,可以修改成自己需要的路径
git clone https://github.com/torch/distro.git ~/torch --recursive
cd ~/torch
bash install-deps;
./install.sh
下面这段是安装Torch的依赖项:
for NAME in dpnn nn optim optnet csvigo cutorch cunn fblualib torchx tds; do luarocks install $NAME; done
可能会报错,若没有继续往下看:
Error:
解决方法:
重新安装luarocks
wget http://www.lua.org/ftp/lua-5.2.4.tar.gz
tar -zxvf lua-5.2.4.tar.gz
make linux test
make install
之后再重新执行:
for NAME in dpnn nn optim optnet csvigo cutorch cunn fblualib torchx tds; do luarocks install $NAME; done
- 激活openface环境
source activate openface
- 安装openface
默认安装在/home/username/openface
,根据自己需要修改
git clone https://github.com/cmusatyalab/openface.git ~/openface
cd openface
python setup.py install
- 下载dlib模型
./models/get-models.sh
这个下载会有点旧,耐心等待
到这里就可以环境就配置完成了
三、测试openface
运行demo2测试:
./demos/classifier.py infer models/openface/celeb-classifier.nn4.small2.v1.pkl ./images/examples/carell.jpg
这时会报错,如下图所示:
原因:
是找不到这个sklearn.grid_search.GridsearchCV这个类,现在的下载的scikit-learn版本是0.20,这个版本把sklearn.grid_search.GridsearchCV这个类移除了,只能通过sklearn.model_selection调用GridsearchCV。
先把原因分析看到最后,别修改代码!别修改代码!别修改代码!
可以通过vim ./demos/classifier.py
来修改代码里的43行那一句,改成from sklearn.model_selection import GridSearchCV
即可。
但是找出这一处的版本不同后,还是会继续报错,下一个就是GMM模块导入失败,其实都是因为scikit-learn版本的问题,最好的办法是直接把conda环境里的scikit-learn版本从0.20降级为0.18,这就一切问题都解决了。
conda install scikit-learn=0.18
等待降级完成,再重新测试demo2的代码就没问题了:
./demos/classifier.py infer models/openface/celeb-classifier.nn4.small2.v1.pkl ./images/examples/carell.jpg
有如下输出就说明成功,这里预测图片的为SteveCarell的自信度为0.99,
这是自带的训练集做的,要用起来还需要自己提供训练集。