数据序列相关性-ACF,PACF和CCF

引言

最近写论文关于预测的特征选择遇到一些问题,想把自己查询学习到的东西整理记录一下,理一理头绪,希望能加深自己对这些东西的理解。首先介绍引入几个概念:自相关函数(autocorrelation function,ACF)、偏自相关函数(partial autocorrelation,PACF)和互相关函数(cross-correlation function,CCF)。接下来介绍每个指标的计算方法和用途:

1. ACF

顾名思义,自相关函数是针对单个时间序列的,对于时间序列\{x_t\},滞后k阶的自协方差函数(autocovariance function,ACVF)为[1]

c_k = \frac{1}{n}\sum_{t=1}^{n-k} \left(x_t-\bar{x}\right) \left(x_{t+k}-\bar{x}\right)

c_0 = \frac{1}{n}\sum_{t=1}^{n} \left(x_t-\bar{x}\right) ^2

ACF被定义为:

acf_k = \frac{c_k}{c_0} = \text{Cor}(x_t,x_{t+k})

我理解的也等同于序列\{x_t\}\{x_{t+k}\}的pearson相关系数。置信区间一般使用下式进行计算[2]
\pm z_{1-\alpha/2} \sqrt{\frac{1}{N} (1 + 2 \sum_{i=1}^{k}{x_{i}^2})}

下面是一个简单的计算程序,是对statsmodels模块的源代码进行简化得到的[3]

from scipy.stats import norm
import numpy as np

def acf(x,nlags=40, alpha=None):
    # Calculate the autocorrelation function. 
    nobs = len(x)
    avf = acovf(x,nlag = nlags)
    acf = avf[:nlags + 1] / avf[0]
    if alpha is not None:
        varacf = np.ones(nlags + 1) / nobs
        varacf[0] = 0
        varacf[1] = 1. / nobs
        varacf[2:] *= 1 + 2 * np.cumsum(acf[1:-1]**2)
        interval = norm.ppf(1 - alpha / 2.) * np.sqrt(varacf)
        confint = np.array(lzip(acf - interval, acf + interval))
        return acf, confint
    else:
        return acf
def acovf(x,nlag=None):
    # Estimate autocovariances.
    xo = x - x.mean()
    n = len(x)
    lag_len = nlag
    if nlag is None:
        lag_len = n - 1
    elif nlag > n - 1:
        raise ValueError('nlag must be smaller than nobs - 1')
    acov = np.empty(lag_len + 1)
    acov[0] = xo.dot(xo)
    for i in range(lag_len):
            acov[i + 1] = xo[i + 1:].dot(xo[:-(i + 1)])
    return  acov

理解了原理可以这样。

import pandas as pd
import matplotlib.pyplot as plt

from statsmodels.tsa.stattools import acf
from statsmodels.graphics.tsaplots import plot_acf

x = pd.read_excel('resample.xls',index_col=0,date_parse=True)

acf_x, interval = acf(x=x,nlags=10,alpha=0.05)
print('ACF:\n',acf_x)
print('ACF95%置信区间下界:\n',interval[:,0]-acf_x)
print('ACF95%置信区间上界:\n',interval[:,1]-acf_x)


plot_acf(x=x,lags=10,alpha=0.05)
plt.show()

输出结果:

ACF:
 [1.         0.97339745 0.95013662 0.93091665 0.91399405 0.89897186
 0.88282934 0.86933546 0.85708885 0.84621534 0.83720026]
ACF95%置信区间下界:
 [ 0.         -0.03625835 -0.06169254 -0.07861061 -0.09196861 -0.10322176
 -0.11304703 -0.12177398 -0.12967655 -0.13692158 -0.14363264]
ACF95%置信区间上界:
 [0.         0.03625835 0.06169254 0.07861061 0.09196861 0.10322176
 0.11304703 0.12177398 0.12967655 0.13692158 0.14363264]

acf

[1] https://nwfsc-timeseries.github.io/atsa-labs/sec-tslab-correlation-within-and-among-time-series.html : Book, Applied Time Series Analysis for Fisheries and Environmental Sciences

[2] https://www.statsmodels.org/stable/_modules/statsmodels/tsa/stattools.html#acf : Python modular, statsmodels

[3] https://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm : Engineering statistics handbook

2. PACF

偏自相关函数也是针对单个时间序列的,关于其和ACF的区别,[4] 进行了一般性的易于理解的解释,我在这里根据自己的理解进行简要翻译一下。

偏自相关函数是序列\{x_t\}与滞后k阶的序列\{x_{t-k}\}的线性相关性,移除\{x_{t-1},x_{t-2},\dots,x_{t-(k-1)}\}的线性依赖,计算公式为:

pacf_k = \begin{cases} \text{Cor}(x_1,x_0)=r_1 & \text{if } k = 1;\\ \text{Cor}(x_k-x_k^{k-1},x_0-x_0^{k-1}) & \text{if } k \geq 2; \end{cases}

滞后1阶的pacf与滞后1阶的acf相等,不存在滞后0阶的pacf。

import pandas as pd
import matplotlib.pyplot as plt

from statsmodels.tsa.stattools import pacf
from statsmodels.graphics.tsaplots import plot_pacf

x = pd.read_excel('resample.xls',index_col=0,date_parse=True)

pacf_x, interval = pacf(x=x,nlags=10,alpha=0.05)
print('PACF:\n',pacf_x)
print('PACF95%置信区间下界:\n',interval[:,0]-pacf_x)
print('PACF95%置信区间上界:\n',interval[:,1]-pacf_x)


plot_pacf(x=x,lags=10,alpha=0.05)
plt.savefig('acf1.jpg',dpi=200)
plt.show()
PACF:
 [ 1.          0.97373069  0.05083912  0.07012207  0.04486007  0.04104969
 -0.01595041  0.0505279   0.02666616  0.03388021  0.04459499]
PACF95%置信区间下界:
 [ 0.         -0.03625835 -0.03625835 -0.03625835 -0.03625835 -0.03625835
 -0.03625835 -0.03625835 -0.03625835 -0.03625835 -0.03625835]
PACF95%置信区间上界:
 [0.         0.03625835 0.03625835 0.03625835 0.03625835 0.03625835
 0.03625835 0.03625835 0.03625835 0.03625835 0.03625835]

pacf

 

3. CCF

交叉相关系数是针对两个时间序列的,对于时间序列\{x_t\}\{y_t\},先计算互协方差函数:
g_k^{xy} = \frac{1}{n}\sum_{t=1}^{n-k} \left(y_t-\bar{y}\right) \left(x_{t+k}-\bar{x}\right)

CCF的定义类似ACF:

r_k^{xy} = \frac{g_k^{xy}}{\sqrt{\text{SD}_x\text{SD}_y}}

其中,{SD}_x, {SD}_y分别为\{x_t\},\{y_t\}的标准差。同时,应该注意的是r_k^{xy} \neq r_{-k}^{xy}r_k^{xy} = r_{-k}^{yx}。其中,y是解释变量,x是预测因子。CCF的95%的置信区间计算公式定义为[1]:

-\frac{1}{n} \pm \frac{2}{\sqrt{n}}

其中n是用于计算互相关系数的样本数量。

import pandas as pd

from statsmodels.tsa.stattools import ccf

x = pd.read_excel('resample.xls',index_col=0,date_parse=True)
ccf_x = ccf(x=x.values.ravel(),y=x.values.ravel())
print('CCF:\n',ccf_x[:10])
输出是:
CCF:
 [1.         0.97373069 0.95078739 0.9318734  0.91524696 0.90051278
 0.88464586 0.87142306 0.85944187 0.8488298 ]

附录:

1. 计算ccf,acf和pcf的置信区间的时候,和数据序列的长度有关系,长度取多少的时候比较合适?

  • 10
    点赞
  • 89
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值