时间序列之自相关函数

相关系数

两个随机变量 X X X Y Y Y的相关系数定义如下:
ρ x , y = C o v ( X , Y ) V a r ( X ) V a r ( Y ) = E [ ( X − μ x ) ( Y − μ y ) ] E ( X − μ x ) 2 E ( Y − μ y ) 2 \begin{aligned} \rho_{x,y} &= \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} \\ &= \frac{E[(X-\mu_x)(Y-\mu_y)]}{\sqrt{E(X-\mu_x)^2E(Y-\mu_y)^2}} \end{aligned} ρx,y=Var(X)Var(Y) Cov(X,Y)=E(Xμx)2E(Yμy)2 E[(Xμx)(Yμy)]
其中, μ x , μ y \mu_x,\mu_y μx,μy分别表示 X , Y X,Y X,Y的均值,并假定方差是存在的。相关系数度量的是 X X X Y Y Y线性相关的程度。相关系数具有以下几个性质:

  • − 1 ≤ ρ x , y ≤ 1 -1 \leq \rho_{x,y} \leq 1 1ρx,y1,说明相关系数处于 − 1 -1 1 1 1 1之间;
  • ρ x , y = ± 1 \rho_{x,y} = \pm1 ρx,y=±1的充分必要条件是, X X X Y Y Y几乎处处有线性关系,即,存在 a ( ≠ 0 ) a(\neq0) a(=0) b b b,使得 P ( Y = a X + b ) = 1 P(Y=aX+b)=1 P(Y=aX+b)=1

当我们有样本 { ( x t , y t ) } t = 1 T \{(x_t,y_t)\}_{t=1}^T {(xt,yt)}t=1T,相关系数可以由样本相关系数估计出来,如下所示:
ρ ^ x , y = ∑ t = 1 T ( x t − x ‾ ) ( y t − y ‾ ) ∑ t = 1 T ( x t − x ‾ ) 2 ∑ t = 1 T ( y t − y ‾ ) 2 \hat{\rho}_{x,y} = \frac{\sum_{t=1}^T(x_t-\overline{x})(y_t-\overline{y})}{\sqrt{\sum_{t=1}^T(x_t-\overline{x})^2 \sum_{t=1}^T(y_t-\overline{y})^2}} ρ^x,y=t=1T(xtx)2t=1T(yty)2 t=1T(xtx)(yty)
其中, x ‾ , y ‾ \overline{x},\overline{y} x,y分别是 X X X Y Y Y的样本均值。

自相关函数(Autocorrelation Function,ACF)1

对于时间序列 r t r_t rt,当我们考虑 r t r_t rt与它的过去值 r t − i r_{t-i} rti的线性相依关系时,可以把相关系数的概念推广到自相关系数 r t r_t rt r t − l r_{t-l} rtl的相关系数称为 r t r_t rt的间隔为 l l l的自相关系数,通常记为 ρ l \rho_l ρl,在弱平稳性的假定条件下,它只是关于 l l l的函数:
ρ l = C o v ( r t , r t − l ) V a r ( r t ) V a r ( r t − l ) = C o v ( r t , r t − l ) V a r ( r t ) = γ l γ 0 \begin{aligned} \rho_l &= \frac{Cov(r_t,r_{t-l})}{\sqrt{Var(r_t)Var(r_{t-l})}} \\ &= \frac{Cov(r_t,r_{t-l})}{Var(r_t)} \\ &= \frac{\gamma_l}{\gamma_0} \end{aligned} ρl=Var(rt)Var(rtl) Cov(rt,rtl)=Var(rt)Cov(rt,rtl)=γ0γl
这里用到了弱平稳性的性质 V a r ( r t ) = V a r ( r t − l ) Var(r_t)=Var(r_{t-l}) Var(rt)=Var(rtl)。由定义2,我们有:

  • ρ 0 = 1 \rho_0=1 ρ0=1
  • ρ l = ρ − l \rho_l=\rho_{-l} ρl=ρl
  • − 1 ≤ ρ l ≤ 1 -1 \leq \rho_l \leq 1 1ρl1

当且仅当对所有 l > 0 l>0 l>0,都有 ρ l = 0 \rho_l=0 ρl=0,则称一个弱平稳序列是序列不相关的。

样本自相关系数

对一个给定的样本序列 { r t } t = 1 T \{r_t\}_{t=1}^T {rt}t=1T,设 r ‾ \overline{r} r 是样本均值,则 r t r_t rt的间隔为1的样本自相关系数
ρ ^ 1 = ∑ t = 2 T ( r t − r ‾ ) ( r t − 1 − r ‾ ) ∑ t = 1 T ( r t − r ‾ ) 2 \hat{\rho}_1 = \frac{\sum_{t=2}^T (r_t-\overline{r})(r_{t-1}-\overline{r})}{\sum_{t=1}^T (r_t-\overline{r})^2} ρ^1=t=1T(rtr)2t=2T(rtr)(rt1r)
在某些一般性条件下, ρ ^ 1 \hat{\rho}_1 ρ^1 ρ 1 \rho_1 ρ1相合估计 r t r_t rt的间隔为 l l l样本自相关系数可定义为:
ρ ^ l = ∑ t = l + 1 T ( r t − r ‾ ) ( r t − l − r ‾ ) ∑ t = 1 T ( r t − r ‾ ) 2 , 0 ≤ l < T − 1 \hat{\rho}_l = \frac{\sum_{t=l+1}^T (r_t-\overline{r})(r_{t-l}-\overline{r})}{\sum_{t=1}^T (r_t-\overline{r})^2},0 \leq l < T-1 ρ^l=t=1T(rtr)2t=l+1T(rtr)(rtlr),0l<T1
{ r t } \{r_t\} {rt}是一个独立同分布序列,满足 E ( r t 2 ) < ∞ E(r_t^2)<\infty E(rt2)<,则对任意固定的正整数 l l l ρ ^ l \hat{\rho}_l ρ^l渐进的服从均值为0,方差为 1 T \frac{1}{T} T1的正态分布。

参考


  1. Ruey S. Tsay.金融时间序列分析[D].王远林,王辉,潘家柱 译. ↩︎

  2. 时间序列之相关概念 ↩︎

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

great-wind

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值