蓝桥杯2014c++A组真题&代码第十题波动数列 DP 01背包 滚动数组
先放上题目
/*
标题:波动数列
观察这个数列:
1 3 0 2 -1 1 -2 ...
这个数列中后一项总是比前一项增加2或者减少3。
栋栋对这种数列很好奇,他想知道长度为 n 和为 s 而且后一项总是比前一项增加a或者减少b的整数数列可能有多少种呢?
【数据格式】
输入的第一行包含四个整数 n s a b,含义如前面说述。
输出一行,包含一个整数,表示满足条件的方案数。由于这个数很大,请输出方案数除以100000007的余数。
例如,输入:
4 10 2 3
程序应该输出:
2
【样例说明】
这两个数列分别是2 4 1 3和7 4 1 -2。
【数据规模与约定】
对于10%的数据,1<=n<=5,0<=s<=5,1<=a,b<=5;
对于30%的数据,1<=n<=30,0<=s<=30,1<=a,b<=30;
对于50%的数据,1<=n<=50,0<=s<=50,1<=a,b<=50;
对于70%的数据,1<=n<=100,0<=s<=500,1<=a, b<=50;
对于100%的数据,1<=n<=1000,-1,000,000,000<=s<=1,000,000,000,1<=a, b<=1,000,000。
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
*/
//x x+a x+2a x+3a x+(n-1)a -->nx + (0+1+2+...+n-1)a == nx + (n(n-1)/2)a == s ->x的最小值
//x x-b x-2b x-3b x-(n-1)b -->nx - (0+1+2+...+n-1)b == nx - (n(n-1)/2)b == s ->x的最大值
//解法1:枚举首项,深搜
解题思路,参考:
虽然之前也注意到数据范围很大,但因为一开始就想的是搜索,所以就各种搜索剪枝,实际上都是徒劳。
像这种简单的DP题目一般都有两个特点:
1.长得和搜索题很像,甚至就能用搜索做
2.有一个大的吓人的数据
看清这两点,明确了思路,下面开始进入分析阶段:
1.按照题目要求,最终得到的序列的长度为n,和为s,并且后一项是前一项加a或减b,我们不妨将这个操作封装在一起,记作P操作,即P=(a,-b)。
2.设首项为x,可以得到一个等式x+(x+P)+(x+2P)+...+(x+(n-1)P)=s,将这个式子整理一下,就是nx+P+2P+...+(n-1)P=s,即(s-(P+2P+...+(n-1)P))/n=x。
3.由题意,x肯定是一个整数,并且由于每一个P代表一个a或者一个-b,所以a和b的总数为n*(n-1)/2,也就是说只要确定了a的个数,那么b的个数也就确定了。
4.关键问题是对于一个确定的a的个数,方案不只有一种,而且a的个数肯定是由(1,2,3,...,n-1)这其中的若干项组成的,,我们把这些项看作元素,第i个元素的权值为i于是,下面就开始构造递推方程
5.首先,定义一个数组dp[i][j],表示前i个元素组成和为j的序列的方案数,这里的和j表示的是所有的a的和,很明显当i!=0时dp[i][0]=1,当j!=0时dp[0][j]=0,然后我们要分两种情况讨论
(1)、i>j时,因为每一个元素i权值都是i,所以当元素的个数大于和的时候,第i个元素的权值已经超过了和,所以第i个元素绝对不能使用,即dp[i][j]=dp[i-1][j]。
(2)、i<=j时,第i个元素的权值是小于等于和的,所以可以用,也可以不用,如果不用,那么就是dp[i-1][j],如果用,就是dp[i-1][j-i],这个有点类似于01背包,所以
dp[i][j]=dp[i-1][j]+dp[i-1][j-i]。
OK,通过上面的分析,我们得到了递推方程,但还有一个问题,就是空间的问题,题目给出的i的最大值达到1000,相应的j也就是1000^2,我们是不可能开出这么大的数组的,观察递推方程,我们可以看出下一个状态只和前一个状态有关,而且我们实际上只需要最后一个状态即,dp[n][j],于是可以使用滚动数组。
先简单说明一下什么叫滚动数组,因为DP的过程就是一个递推的过程,在推导的过程中,数组中的每一个元素或者是前一个状态,或者是后一个状态,但是,当我们并不需要中间状态得到保留的时候,可以使下一个状态覆盖之前的一个状态,这样就可以极大的压缩空间。
回到本题,我们定义dp[2][MAX*MAX],也就是说,后面的状态会把前面的状态覆盖掉。
---------------------
原文:https://blog.csdn.net/wr132/article/details/43861145
-----------------------
首先这里的01 背包问题主要思路在于,+a 或者 -b 的总共操作数为n*(n-1) 个,这里就可以把n*(n-1) 看成总共的容量 W , 对应的 如果我们确定 +a 的操作次数 ,那么 -b 的操作次数也就可以确定了。
#include<iostream>
#include<cstring>
using namespace std;
const int MAXN = 1050;
typedef long long ll;
//int dp[2][MAXN*MAXN];
const int mod = 100000007;
int main(){
ll n,s,a,b;
scanf("%lld%lld%lld%lld",&n,&s,&a,&b);
//总操作次数
int T = n*(n-1)/2;
int dp[2][T+1];
memset(dp,0,sizeof(dp));
//滚动数组
int *crt = dp[0]; int *next = dp[1];
crt[0] = 1;next[0] = 1;
for(int i=1;i<n;i++){
for(int j=0;j<=(i+1)*i/2;j++){
if(j<i) next[j] = crt[j]%mod;
// 这里 把 i 当成 背包的重量
// 当前容量 j , 如果这个物体的重量 小于容量的话
//就可以选择放进去,或者不放进去
else next[j] = (crt[j]+crt[j-i] )%mod;
}
swap(crt,next);
}
ll ans = 0;
for(ll ta=0;ta<=T;ta++){
ll num = s+ (T-ta)*b - ta*a;
if(num%n == 0){
// printf("%d ",crt[ta]);
ans = (ans+crt[ta] )%mod;
}
}
printf("%I64d",ans);
return 0;
}