牛顿插值法

差商定义:

f(x)在 x_{0} 点处的0阶差商  f[x_{0}] = f(x_{0})

f(x)在 x_{0},x_{1} 点处的1阶差商  f[x_{0},x_{1}] = \frac{ f(x_{0})- f(x_{1})}{ x_{0}- x_{1}}

f(x)在 x_{0},x_{1} 点处的1阶差商  f[x_{0},x_{1}] = \frac{ f(x_{0})- f(x_{1})}{ x_{0}- x_{1}}

f(x)在 x_{0},x_{1},x_{2} 点处的2阶差商  f[x_{0},x_{1},x_{2}] = \frac{ f[x_{0},x_{1}]- f[x_{1},x_{2}]}{ x_{0}- x_{2}}

......

f(x)在 x_{0},x_{1},...,x_{n} 点处的n阶差商  f[x_{0},x_{1},...,x_{n}] = \frac{ f[x_{0},x_{1},...,x_{n-1}]- f[x_{1},x_{2},...,x_{n}]}{ x_{0}- x_{n}}

 

差商表:

x_{k}f(x_{k})1阶差商2阶差商3阶差商4阶差商......
x_{0}f(x_{0})     
x_{1}f(x_{1})f[x_{0},x_{1}]    
x_{2}f(x_{2})f[x_{1},x_{2}]f[x_{0},x_{1},x_{2}]   
x_{3}f(x_{3})f[x_{2},x_{3}]f[x_{1},x_{2},x_{3}]f[x_{0},x_{1},x_{2},x_{3}]  
x_{4}f(x_{4})f[x_{3},x_{4}]f[x_{2},x_{3},x_{4}]f[x_{1},x_{2},x_{3},x_{4}]f[x_{0},x_{1},x_{2},x_{3},x_{4}] 
..........................................

 

牛顿插值函数:

过 n + 1 个插值节点(x_{0},f(x_{0})),(x_{1},f(x_{1})),...,(x_{n},f(x_{n}))的n次牛顿插值函数的一般形式为: 

N_{n}(x) = f[x_{0}]+ f[x_{0},x_{1}](x-x_{0})+f[x_{0},x_{1},x_{2}](x-x_{0})(x-x_{1})+...+f[x_{0},x_{1},...,x_{n}](x-x_{0})(x-x_{1})...(x-x_{n-1})

 

所以利用牛顿插值法首先需要计算差商,再求近似值。在代入插值公式时,可以采用秦九韶算法提取公因数进行算法优化。另外牛顿插值函数比拉格朗日插值函数更具有优势。因为当增加新插值节点时,牛顿插值函数能避免重复计算。

 

代码:

#include <stdio.h>

const int maxn = 50;

// 计算差商 
void DifferenceQuotient(int n, double *x, double **f){
	int k;
	for(int j = 1; j < n; j++){                    // 第 j 列
		for(int i = j; i < n; i++){            // 第 i 行
			f[i][j] = (f[i][j-1] - f[i-1][j])/(x[i]-x[i-j]);
		}
	}
}

// 秦九韶算法 
double Newton(int n, double *x, double **f, double _x){
	double _y = f[n-1][n-1];
	for(int i = n-2; i >= 0; i--){
		_y = _y * (_x - x[i]) + f[i][i];
	}
	return _y;
}

int main(){
	double x[maxn], _x;
	double **f = new double *[maxn];
	for(int i = 0; i < maxn; i++) f[i] = new double[maxn];
	int n;
	printf("请输入插值结点的个数:");
	scanf("%d",&n);
	for(int i = 0; i < n; i++){
		printf("请输入插值结点x%d,y%d:",i,i);
		scanf("%lf %lf",&x[i],&f[i][0]);
	}
	DifferenceQuotient(n,x,f);
	printf("请输入_x:"); 
	scanf("%lf",&_x);
	printf("N(%lf)的近似值:%lf",_x,Newton(n,x,f,_x));
	delete f;
	return 0;
}

空间优化:牛顿插值公式,只用了差商表的各列的最上面一个差商,因此可以只存储各列的最上面的差商,使空间复杂度从O(n^2)降为O(n)。但增加新节点时,不能重复利用之前的差商,需要重新计算差商表。

 

思路:用一个一维数组f[n]存放差商表,f[i] 表示第 i 阶差商。初始化时,0阶差商等于函数本身。即,f[i] = f(xi)。因计算新的差商时,需要用到旧的差商。所以采取从下往上计算的方式,保证在计算新差商时,旧差商没有被覆盖。由于计算过程会保证 i >= j,所以新的差商f[i+1],不会覆盖旧差商 f[i]。当计算结束后,所以阶的差商也就被计算出来了。

 

代码:

// 优化
for(int j = 1; j < n; j++){
    for(int i = n-1; i >= j; i--){                // 自下往上计算
        f[i] = (f[i] - f[i-1])/(x[i] - x[i-j]);
    }  
}

 

测试用例:

3
2.56 1.6
2.89 1.7
3.24 1.8
3
近似值:1.732

 

测试结果:

 

  • 9
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值