数字空间中的二值形态学

数字空间中的二值形态学

Binary Morphology in Digital Space

Herry

Herry

 

 

 

 

摘要:数学形态学作为图象处理与分析的基本理论和方法在视觉检测、生物医学图象分析、机器人视觉、图象压缩编码、纹理分析等诸多领域,都取得了非常成功的应用,创造了巨大的经济效益。同时,从近年来大量涌现的研究期刊和会议论文可以看到,数学形态学已经发展成为图象处理的一个主要研究领域。本文作为数字图象处理课程的结业报告,以介绍数学形态学的沿革、基本运算、形态学在数字空间中的畸变和灰值形态学为主,同时结合作者所掌握的知识,阐述了自己的一些认识和看法。最后,笔者就图象处理中的一般方法,谈了一些务虚的想法。

关键字:形态学;数字空间;图象处理

 

 

AbstractMathematical morphology has developed greatly in both research field and application field. Applications of morphology in vision detection, biological and medical image analysis, robot vision, image compressing coding, pattern analysis, etc. all have gained surprising success. On the other hand, there appear more and more research journals and conference papers, proving that mathematical morphology has been becoming a main research field of image processing. This paper is a course completing report of Digital Image Processing, whose emphasis is on the introduction of the history of mathematical morphology, fundamental operations, aberrance of morphology in digital space, and grayscale morphology. Meanwhile, I state my understanding and opinion along with them. At the end, there is my thinking about the general methods in image processing without any supporting resources.

Key wordsMorphologyDigital spaceImage processing

 

 

一、       数学形态学的沿革

数学形态学诞生于1964年。当时法国巴黎矿业学院的J.SerraG.Matheron

的指导下从事博士论文的研究工作,内容是对法国洛林地区的铁矿核作定量岩相分析,从而预测起开采特性。Serra用计算矿核切片的多形态图的方法取代了刚体力学方法。他意识到方差、弦长分布、周长测量及颗粒计数等都是某个独特概念的特殊情况。Serra将其称为击中击不中变换(Hit-Miss Transform)。

    与此同时,在一个更为理论的层面上,Matheron承担了多孔介质渗透性与其几何(或纹理)之间关系的研究工作。第一次引入了形态学开的表达式,并在此基础上利用凸结构元素建立了颗粒分析方法。

    60年代的工作从理论和实践两个方面初步奠定了数学形态学的基础,产生了击中击不中变换,开运算,闭运算和布尔模型的理论描述,以及第一个纹理分析器原型。

    70年代是数学形态学的充实和发展期。击中击不中变换很快得到了一连串成功的应用。而在理论方面,以Matheron的工作为主要标志:拓扑学基础,随机集,递增映射,凸性分析,随机集的若干模型等。

    80年代是数学形态学的成熟和对外开放期。数学形态学走向了世界,尤其是美国;在格论基础上建立了数学形态学的数学框架;随机处理方法得到进一步的更新。所有这些都标志着数学形态学即将进入一个快速发展期。

    80年代的另一个特点,是在格论数学框架上建立了形态学方法的基础。各种各样的实际应用问题,迫使人们回到基础理论方面寻找解决问题的出路和方法。数学形态学最初的算子是面向集合的,要将它们拓宽到其他领域,如对(网格)图的、数值函数的形态学处理,在这种情况下,平移或旋转会影响到处理过程,甚至使处理过程无效。一些概念,如连通性、测地等需要新的符号来描述。为了使形态学的基本理论具有更广泛的适用性,更统一的形式和便于新算法的研究,数学形态学基本定理的核心最终被简化到备格结构。

    90年代至今,是数学形态学的持续发展、扩展期,取得了一系列重大应用和理论成果。

    纵观数学形态学的发展史,不难发现,其沿革历程和其他学科大同小异,都是呈螺旋式发展的形式。后期的应用和发展,总是促使人们回到起始点,回到理论层面,对其根基进行不断的填充。图1.1是数学形态学发展的一个简化模型。它几乎和其他学科的发展模型一致。

零星思想

零星思想

零星思想

第一次系统概括

理论填充

应用发展

数学形态学发展的简化模型

数学形态学发展的简化模型

由此可见,一个新理论的诞生和成熟,是经过长期的,反复的锤炼而来的。

 

 

二、       数学形态学的基本运算

形态学的运算具有高度的统一性。击中击不中变换在数学形态学中起着核心作用。它的基本思想至少来源于(或拓广到)五个方面:第一,这种变换扩展了对随机函数空间定律的表达方式;第二,这种变换曾用来对格式塔心理学的一些思想作数学上的形式化描述;第三,这种变换来源于(或完成于)实验及纹理分析;第四,击中击不中变换为腐蚀和膨胀两个重要的形态学运算奠定了逻辑上的前期条件;第五,击中击不中变换简洁的表达方式可以在所有已应用于实践中的数学形态学算法中可窥见一斑。

    2.1说明了这种统一性。

HMT

腐蚀(膨胀)

细化

开(闭)

同伦骨架

特殊细化

各向同性腐蚀

各向异性腐蚀

随机集

SKIZ

数学形态学的基本运算和算法

数学形态学的基本运算和算法

 

 

三、       数字空间中的畸变

3.1数字空间的概念和性质

3.1.1数字空间的概念

    在图象处理中用到的数字空间有两种,一种是正方形网格空间,记为Q2;另一种是正六边形网格空间,记为H2。它们都是欧氏空间R2的子集。在欧氏空间中通常使用的坐标系下,命u1(k) = (0, k)u2(k) = (k, 0)v1(k) = (0, k)v2(k) = (k/2, root(3)k/2),其中k为一个正实数,那么Q2H2可定义为:

Q2 = {x1u1(k) + x2u2(k) | x1, x2均为整数}

H2 = {x1v1(k) + x2v2(k) | x1, x2均为整数}

因此,Q2H2实际上是在不同坐标系统下的具有整数坐标的点(称为格点)的集合。K称为网格空间的密度,它刻画了网格点的密度。

3.1.2数字空间中的拓扑二义性

    首先引入以下定义:

    1、对于Q2中的点x,它的四邻域定义为点集N4(x) = {x, x + u1, x + u2, x – u1, x – u2},而N8(x) = {x, x + u1, x + u1 + u2, x + u2, x + u2 – u1, x – u1, x – u1 – u2, x – u2, x + u1 – u2}称为x的八邻域。N4(x) – {x}中的点称为x的直接邻接点,而N8(x) – N4(x) – {x}中的点称为x的间接邻接点。

    2、对H2中的点x,它的六邻域定义为点集N6(x) = {x, x + v1, x + v2, x – v1, x – v1 + v2, x – v2, x + v1 – v2}N6(x) – {x}中的点称为x的邻接点。

    3、如果一个Q2中的点列x0x1,……,xn满足xk∈N4(xk-1)(k = 1, 2, ……,n),则称为一条由x0到xn的四连通路径。如果它们满足xk∈N8(xk-1)(k = 1, 2, ……,n),则称为一条由x0到xn的八连通路径。

    4、如果一个H2中的点列x0x1,……,xn满足xk∈N6(xk-1)(k = 1, 2, ……,n),则称为一条由x0到xn的四连通路径。

    5、给定Q2中一个集合X,对xyX,如果存在一条X中的由xy的八连通路径,则称为xyX中是八连通的。如果存在一条X中的由xy的四连通路径,则称为xyX中四连通。

    6、给定H2中一个集合X,对xyX,若存在一条X中的xy的连通路径,则称为xyX中是连通的。

    7、对数字空间(Q2H2)中的一个集合X和一个有意义的连通定义,如果X中的任意两点均在X中是连通的,则X是一个连通集合。

    在连续空间R2中,一条简单的封闭曲线L的内部A和外部B均是简单的连通集合,且它们彼此不连通,或者说由A中任意一点xB中任意一点y的连通路径必然与所给封闭曲线L相交。这就是R2中的Jordan定理。如图3.1所示。

B

y

A

x

Jordan定理

    现在考察图3.2中的正方形网格空间。

2Q2中的拓扑奇异性(图中有四种标记:圆圈,方块,粗十字,细十字)

假如我们使用八连通定义,则细十字点集形成一条简单封闭曲线L,其内点集A由粗十字和方块组成,外部点集B由圆圈组成。显然AB是彼此八连通的,我们可以构造出从AB的八连通路径且使之与L不相交(图中虚线所示)。因此八连通定义不满足Jordan定理。如果我们使用四连通定义,图中细十字和粗十字形成一条简单四连通封闭曲线L,其内部A由方块组成,外部B由圆圈组成。显然A不是一个四连通集合,因此仍然不满足Jordan定理。这就是正方形网格空间中一个经典的拓扑奇异现象。

    解决这一问题的最常用方法是对前景和背景使用不同的连通性定义。例如若对曲线使用四连通定义,那么曲线的补集就使用八连通定义。这就是拓扑的二义性。

    对于六边形网格空间H2,只有一种连通性定义,而且这一连通性定义下,Jordan定理成立。因此H2中不存在拓扑奇异性,也就没有拓扑二义性。正是由于这个原因,近年来六边形网格较受推崇。不过六边形网格采样技术比较复杂,而且从形态学角度看,它的几何也不如正方形网格空间丰富,因此应用仍然不广泛。

3.1.3数字空间中的几何意义

    数字空间中的几何概念可以由连续空间中的对应概念的网格空间采样得到。这是最自然,最稳妥的方法,而由连续空间中的定义直接类推通常是危险的。

    例如,连续空间中集合Aλ为相似因子的相似集合λA定义为{λa| aA}。但对数字空间来说,这个定义不能使用。原因有两个:1λaaZ2)可能不是一个网格点;2、这样的λA会遗失很多点而导致与A完全不同的结构。

    正确的定义应该是:A*A对应的连续集合(A*Z2 = A),则Aλ为相似因子的相似集合为λA* Z2

3.1.4数字凸集和连续凸集的区别

    数字凸集虽然与连续凸集有很多相似的性质,但同时在一些相当重要的特征上也有明显的不同。例如,连续凸集一定是连通集合,但数字凸集未必是连通的。如图3.3所示。

不连通的数字凸集

3.2数字空间中的畸变

3.2.1数字图象处理的预期目标及其现实情况

    在图象处理的实际环境中,数字空间是一切处理和操作的载体。而进行这些数字空间中的处理的目的则是为了分析和理解连续空间中的客观世界。换句话说,是为了实现连续空间中一个期望的,理想的,假定的处理和操作。因此,一个自然的要求就是所完成的数字空间中的运算与所期望的连续空间中的运算应该有良好的对应关系。假定一个连续空间的集合运算£*,其相应的数字空间中的集合运算为£,那么在理想情况下,它们应满足下述关系:

£*(X) ∩ Z2 = £(X ∩ Z2)

采样过程通常会有信息损失,因而实际中上式常常无法满足。不过在采样密度适当高的条件下,采样所损失的信息可以很少。因而应力争使上式近似得以满足。

    这里的近似性至少有两个方面的含义:1、等式两边的集合在某种意义上是相近的;2、这两个集合具有同样的几何和拓扑结构。

    简单地将连续空间中的运算类推移植到数字空间中,不一定满足这种近似性。一个经典的例子就是图象的骨架抽取算法。在连续空间中图象的骨架变换在很弱的条件下就能给出连通的骨架,而将这一变换类推到数字空间中后,所求得的骨架通常是不连通的。

3.2.2形态学运算畸变示例

    3.4展示一个八连通凸集膨胀运算的畸变。(a):数字空间中的畸变;(b):(a)中凸集对应的连续凸集的膨胀运算结果。

八连通凸集膨胀运算的畸变

3.2.3数字空间中的几何贫乏性

    数字空间是离散的点集,与连续空间相比,它的结构简单得多,稀疏得多,这就以为着数字空间中的几何对象在几何性质、形状结构等诸多方面都将被制约,灵活性要小的多。在经典的图象处理方法中,由于它们通常不显式地关联图象的几何性质,因此这一制约所引起的问题显得不那么突出。对于形态学方法来讲,它更关注于数字空间的几何特点,同时对数字空间内在的几何制约要敏感的多。

    数字空间中的几何贫乏性表现之一是集合的大小和形状不能连续变化。数字空间中的一个圆盘事实上是一个有限边数的多边形,它远没有连续圆盘那么平滑。当它的半径缩小时,只能按定长递减。另一个表现是,小尺寸的连续集合的采样过程会产生巨大的相对变形,从而可能破坏一切几何特征。如图3.5所示。

小尺寸连续集合的采样过程              

3.3结论

    数字空间中形态学运算的畸变是一个相当本质的问题,即使在图象和结构元素均有良好性质(即连通性)时,它仍有可能发生。因此,畸变发生的条件和畸变类型的研究和分析就显得十分重要。我们必须对这些问题给出一个令人满意的答案,从而寻求出避免或修正畸变的有效方法,以证实在数字空间中形态学方法的可用性,并保证数字空间形态学运算应用的可靠性和合理性。

 

 

四、       灰值形态学简介

在这里,作者并不想对灰值形态学的理论和方法做过多的阐述,只是对灰值

形态学的运算形式和分析数学中的卷积定理做一个简单的对比。

    首先做如下定义:

    f代表一个图象;g代表一个结构函数;Uf)代表函数f的阴影集;GU)代表阴影集U的表面函数;代表一个灰值形态学运算,代表二值形态学运算。那么,灰值形态学运算的一般形式为:

fg = G[UfUg]

这个形式和分析数学中的卷积定理有着惊人的相似:

    定义:£(f)代表函数f的傅立叶变换,£~(f)代表函数f的傅立叶逆变换;⊙代表卷积运算,则卷积定理的一般形式为:

f⊙h = £~[£(f)£(h)]

    这两个一般形式中,有着某种对应性(如表4.1所示):

灰值形态学运算

卷积

阴影集(U

傅立叶变换(£

表面函数(G

傅立叶逆变换(£~

二值形态学运算(

频率域乘法

4.1灰值形态学运算和卷积定理之间的对应关系

这种对应性和高度一致性突出了它们的一个共同性质:它们都将某一个域的运算,变换为另外一个域的运算。这种变换具有一个重要性质,即可逆性。从而可以使得在某一个域中不可能完成的任务,或很难完成的任务,在另外一个域中得以顺利完成。

    笔者认为,把握以上这种对应性和一致性,对于深入理解变换存在的目的和意义具有很大的帮助。

 

 

五、       图象处理中的一般方法

本节所要阐述的内容是笔者一些务虚的想法。表5.1列出了笔者至今所接触

到的图象处理所使用的一般方法,数学背景,以及它们对图象本质的认识:

一般方法

形态学

分析方法

统计方法

数学背景

集合论

分析数学

概率数学

对图象的认识

点集

点集

5.1图象处理中的一般方法

    这太巧合了!人们对图象的认识,和人们对光的认识具有惊人的相似性。人们对于光的认识可以统一到波粒二相性上来,那么对于图象的认识是否也可以统一起来呢?这是很多专家学者所反对的观点。自始至终图象处理都是一个面向问题的学科,在可以预见的将来都无法找到一种超级理论,来包罗图象处理中的所有理论。

    笔者对于统一论有一定的偏执和爱好,但并不对图象处理统一论的观点有半点乐观。世界上有些巧合确实蕴涵着统一论的玄机,但有些巧合,最终也只是巧合而已。

    然而笔者认为,一个统一的理论,并意味着一定有一个包罗一切的超级定理来支撑。它有可能是某种认识上的统一。就图象而言,是否有一种理论来指导我们在什么样的场合使用什么的本质来解释图象——正如人们在宏观上利用光的波动性,在微观上利用光的粒子性一样。笔者深信,这种认识上的统一论是存在的。

 

 

致谢

    非常感谢刘怡光老师半年来对我的教诲和指导。本文得以完成得益于参阅了互联网上的大量信息,在此对那些无私奉献的网友表示诚挚的谢意。

 

 

参考文献

[1]崔屹。《图象处理与分析——数学形态学方法及应用》。北京:科学出版社,2000

[2]龚炜,石青云,程民德。《数字空间中的数学形态学——理论及应用》。北京:

科学出版社,1997

[3]J.Serra. Introduction to mathematical morphology, CVGIP, Vol.35, 283305, 1986

[4]Henk Heijmans. Mathematical Morphology and Image Processing, ERCIM

News No.37 - April 1999

阅读更多

没有更多推荐了,返回首页