凸集、凸函数与凸规划


1 凸集

设集合 S ⊂ R n S\subset \R^n SRn,若 S S S中任意两点连线仍属于 S S S,则 S S S称为凸集,即
x 1 + λ ( x 2 − x 1 ) ∈ S \bm x_1 + \lambda(\bm x_2 - \bm x_1) \in S x1+λ(x2x1)S

图1 凸集(左)与非凸集(右)

2 凸函数

S S S R n \R^n Rn上的非空凸集, f f f是定义在 S S S上的实函数,若对任意 x 1 , x 2 ∈ S \bm x_1, \bm x_2 \in S x1,x2S,及 λ ∈ ( 0 , 1 ) \lambda \in (0, 1) λ(0,1),都有
f ( x 1 + λ ( x 2 − x 1 ) ) ≤ f ( x 1 ) + λ [ f ( x 2 ) − f ( x 1 ) ] f(\bm x_1+\lambda(\bm x_2 - \bm x_1))\leq f(\bm x_1) + \lambda[f(\bm x_2) - f(\bm x_1)] f(x1+λ(x2x1))f(x1)+λ[f(x2)f(x1)]

则称 f f f S S S上的凸函数
对于一元函数 f f f,凸函数的几何解释可简单理解为曲线 f f f上任意两点的弦不在曲线下方,如下图所示。

图2 凸函数

一元凸函数的几何证明


( x 1 , f ( x 1 ) ) , ( x 2 , f ( x 2 ) ) (x_1, f(x_1)), (x_2, f(x_2)) (x1,f(x1)),(x2,f(x2))为曲线 f f f上的两点,且满足 x 1 &lt; x &lt; x 2 x_1&lt; x &lt; x_2 x1<x<x2,由直线的两点式公式
y − y 1 y 2 − y 1 = x − x 1 x 2 − x 1 \frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1} y2y1yy1=x2x1xx1
知,该两点构成的弦所在直线的方程为
y − f ( x 1 ) f ( x 2 ) − f ( x 1 ) = x − x 1 x 2 − x 1 \frac{y-f(x_1)}{f(x_2)-f(x_1)}=\frac{x-x_1}{x_2-x_1} f(x2)f(x1)yf(x1)=x2x1xx1

由于弦上的点不小于对应曲线上的点,令 0 &lt; λ &lt; 1 0\lt\lambda\lt1 0<λ<1 x = x 1 + λ ( x 2 − x 1 ) x=x_1+\lambda(x_2-x_1) x=x1+λ(x2x1),得
y ≥ f ( x ) &ThickSpace; ⟹ &ThickSpace; f ( x 1 + λ ( x 2 − x 1 ) ) − f ( x 1 ) f ( x 2 ) − f ( x 1 ) ≤ x 1 + λ ( x 2 − x 1 ) − x 1 x 2 − x 1 y\geq f(x) \implies \frac{f(x_1+\lambda(x_2-x_1))-f(x_1)}{f(x_2)-f(x_1)}\leq\frac{x_1+\lambda(x_2-x_1)-x_1}{x_2-x_1} yf(x)f(x2)f(x1)f(x1+λ(x2x1))f(x1)x2x1x1+λ(x2x1)x1

因此 f ( x 1 + λ ( x 2 − x 1 ) ) ≤ f ( x 1 ) + λ ( f ( x 2 ) − f ( x 1 ) ) f(x_1+\lambda(x_2-x_1)) \leq f(x_1)+\lambda(f(x_2)-f(x_1)) f(x1+λ(x2x1))f(x1)+λ(f(x2)f(x1)),不等式得证。

2.1 凸函数性质

凸函数的局部极小点是全局极小点。

证明: x ∗ \bm x^* x是凸函数 f ( x ) f(\bm x) f(x)的局部极小点,假设 ∃ x ^ ∈ S \exists\hat \bm x \in S x^S,使得 f ( x ∗ ) &gt; f ( x ^ ) f(\bm x^*) &gt; f(\hat \bm x) f(x)>f(x^),则对任意 λ ∈ ( 0 , 1 ) \lambda \in(0, 1) λ(0,1),由凸集性质有
x ∗ + λ ( x ^ − x ∗ ) ∈ S \bm x^* + \lambda(\hat \bm x - \bm x^*) \in S x+λ(x^x)S

因此
f ( x ∗ + λ ( x ^ − x ∗ ) ) ≤ f ( x ∗ ) + λ [ f ( x ^ ) − f ( x ∗ ) ] &lt; f ( x ∗ ) f(\bm x^* + \lambda(\hat \bm x - \bm x^*))\leq f(\bm x^*) + \lambda[f(\hat\bm x) - f(\bm x^*)] &lt;f(\bm x^*) f(x+λ(x^x))f(x)+λ[f(x^)f(x)]<f(x)
上述不等式表明,对任意 λ ∈ ( 0 , 1 ) \lambda \in (0, 1) λ(0,1)都存在 f ( x ∗ + λ ( x ^ − x ∗ ) ) &lt; f ( x ∗ ) f(\bm x^* + \lambda(\hat \bm x - \bm x^*)) \lt f(\bm x^*) f(x+λ(x^x))<f(x),显然与 f ( x ∗ ) f(\bm x^*) f(x)是极小值矛盾。

2.2 一阶判别公式

f f f是定义在凸集 S S S上的可微函数,则 f f f为凸函数的充要条件是,对任意 x 1 , x 2 ∈ S \bm x_1, \bm x_2 \in S x1,x2S,有
f ( x 2 ) ≥ f ( x 1 ) + ∇ f ( x 1 ) T ( x 2 − x 1 ) f(\bm x_2)\geq f(\bm x_1)+\nabla f(\bm x_1)^T(\bm x_2 - \bm x_1) f(x2)f(x1)+f(x1)T(x2x1)

一阶判别公式证明


必要性
f ( x 1 + λ ( x 2 − x 1 ) ) ≤ f ( x 1 ) + λ ( f ( x 2 ) − f ( x 1 ) ) f(x_1+\lambda(x_2-x_1)) \leq f(x_1)+\lambda(f(x_2)-f(x_1)) f(x1+λ(x2x1))f(x1)+λ(f(x2)f(x1)),得
f ( x 2 ) ≥ f ( x 1 ) + f ( x 1 + λ ( x 2 − x 1 ) ) − f ( x 1 ) λ ( x 2 − x 1 ) ( x 2 − x 1 ) f(x_2)\geq f(x_1)+\frac{f(x_1+\lambda(x_2-x_1))-f(x_1)}{\lambda (x_2-x_1)}(x_2-x_1) f(x2)f(x1)+λ(x2x1)f(x1+λ(x2x1))f(x1)(x2x1)

显然当 λ → 0 \lambda \to 0 λ0时, f ( x 2 ) ≥ f ( x 1 ) + f ′ ( x 1 ) ( x 2 − x 1 ) f(x_2)\geq f(x_1)+f&#x27;(x_1)(x_2-x_1) f(x2)f(x1)+f(x1)(x2x1),必要性得证。

充分性
f ( x ) ≥ f ( y ) + f ′ ( y ) ( x − y ) f(x)\geq f(y)+f&#x27;(y)(x-y) f(x)f(y)+f(y)(xy),因此
f ( x 1 ) ≥ f ( y ) + f ′ ( y ) ( x 1 − y ) , f ( x 2 ) ≥ f ( y ) + f ′ ( y ) ( x 2 − y ) f(x_1) \geq f(y)+f&#x27;(y)(x_1-y),\quad f(x_2) \geq f(y)+f&#x27;(y)(x_2-y) f(x1)f(y)+f(y)(x1y),f(x2)f(y)+f(y)(x2y)

因此令 y = x 1 + λ ( x 2 − x 1 ) y=x_1+\lambda(x_2-x_1) y=x1+λ(x2x1),上面左侧不等式两侧乘 ( 1 − λ ) (1-\lambda) (1λ)、右侧不等式两侧乘 λ \lambda λ,合并两个不等式得
( 1 − λ ) f ( x 1 ) + λ f ( x 2 ) ≥ f ( y ) + f ′ ( y ) [ x 1 + λ ( x 2 − x 1 ) − y ] = f ( y ) (1-\lambda)f(x_1)+\lambda f(x_2) \geq f(y) + f&#x27;(y)[x_1+\lambda(x_2-x_1) - y]=f(y) (1λ)f(x1)+λf(x2)f(y)+f(y)[x1+λ(x2x1)y]=f(y)

显然 f ( x 1 + λ ( x 2 − x 1 ) ) ≤ f ( x 1 ) + λ ( f ( x 2 ) − f ( x 1 ) ) f(x_1+\lambda(x_2-x_1)) \leq f(x_1)+\lambda(f(x_2)-f(x_1)) f(x1+λ(x2x1))f(x1)+λ(f(x2)f(x1)),充分性得证。

几何解释: ( x , f ( x ) ) (x, f(x)) (x,f(x))为曲线 f f f上一点, y y y为该点处的切线,则自变量 x x x增加 Δ x \Delta x Δx,对曲线 f f f和切线 y y y带来的变化分别为 Δ f \Delta f Δf Δ y \Delta y Δy,则
Δ f &gt; Δ y \Delta f \gt \Delta y Δf>Δy

图 一元凸函数判别公式的几何意义

2.3 二阶判别公式

f f f是定义在凸集 S S S上的二阶可微函数,则 f f f为凸函数的充要条件是在任意 x ∈ S \bm x \in S xS处,Hesse矩阵半正定。

二阶判别公式证明


必要性
对任一点 x ∗ ∈ S \bm x^* \in S xS,存在 λ ∈ [ − δ , δ ] \lambda \in [-\delta, \delta] λ[δ,δ],有 x ∗ + λ x ∈ S \bm x^* + \lambda \bm x \in S x+λxS,因此
f ( x ∗ + λ x ) ≥ f ( x ∗ ) + λ ∇ f ( x ∗ ) T x f(\bm x^* + \lambda \bm x) \geq f(\bm x^*) + \lambda \nabla f(\bm x^*)^T \bm x f(x+λx)f(x)+λf(x)Tx

f ( x ) f(\bm x) f(x)在点 x ∗ \bm x^* x处二次可微,则
f ( x ∗ + λ x ) = f ( x ∗ ) + λ ∇ f ( x ∗ ) T x + 1 2 λ 2 x T ∇ 2 f ( x ∗ ) x + o ( ∣ ∣ λ x ∣ ∣ 2 ) f(\bm x^* + \lambda \bm x)=f(\bm x^*) + \lambda \nabla f(\bm x^*)^T \bm x+\frac{1}{2}\lambda^2\bm x^T\nabla^2f(\bm x^*)\bm x + o(||\lambda \bm x||^2) f(x+λx)=f(x)+λf(x)Tx+21λ2xT2f(x)x+o(λx2)

1 2 λ 2 x T ∇ 2 f ( x ∗ ) x + o ( ∣ ∣ λ x ∣ ∣ 2 ) ≥ 0 \dfrac{1}{2}\lambda^2\bm x^T\nabla^2f(\bm x^*)\bm x + o(||\lambda \bm x||^2)\geq0 21λ2xT2f(x)x+o(λx2)0,因此
x T ∇ 2 f ( x ∗ ) x ≥ 0 \bm x^T\nabla^2f(\bm x^*)\bm x \geq 0 xT2f(x)x0

∇ 2 f ( x ∗ ) \nabla^2f(\bm x^*) 2f(x)半正定,必要性得证。

充分性
设Hesse矩阵 ∇ 2 f ( x ) \nabla^2f(\bm x) 2f(x)在每一点 x ∈ S \bm x\in S xS处半正定,对任意 x ∗ , x ∈ \bm x^*, \bm x\in x,x 凸集 S S S,由中值定理得
f ( x ) = f ( x ∗ ) + ∇ f ( x ∗ ) T ( x − x ∗ ) + 1 2 ( x − x ∗ ) 2 ∇ 2 f ( x ^ ) ( x − x ∗ ) f(\bm x) = f(\bm x^*) + \nabla f(\bm x^*)^T(\bm x-\bm x^*)+\frac{1}{2}(\bm x-\bm x^*)^2\nabla^2f(\hat \bm x)(\bm x-\bm x^*) f(x)=f(x)+f(x)T(xx)+21(xx)22f(x^)(xx)

其中 x ^ = x + λ ( x ∗ − x ) \hat \bm x=\bm x+\lambda(\bm x^*-\bm x) x^=x+λ(xx),因此当 ∇ 2 f ( x ^ ) \nabla^2f(\hat \bm x) 2f(x^)半正定时,必有
( x − x ‾ ) T ∇ 2 f ( x ^ ) ( x − x ‾ ) ≥ 0 (x-\overline x)^T\nabla^2f(\hat x)(x-\overline x)\geq 0 (xx)T2f(x^)(xx)0

f ( x ) ≥ f ( x ∗ ) + ∇ f ( x ∗ ) T ( x − x ∗ ) f(\bm x) \geq f(\bm x^*) + \nabla f(\bm x^*)^T(\bm x-\bm x^*) f(x)f(x)+f(x)T(xx),充分性得证。

3 凸规划

考虑非线性规划问题
min ⁡ f ( x ) x ∈ R n s.t. g i ( x ) ≤ 0 , i = 1 , ⋯ &ThinSpace; , m h j ( x ) = 0 , j = 1 , ⋯ &ThinSpace; , l \begin{aligned} \min &amp;\quad f(\bm{x}) \quad \bm{x}\in\R^n\\ \text{s.t.} &amp;\quad g_i(\bm{x}) \leq 0,\quad i=1,\cdots,m\\ &amp;\quad h_j(\bm{x}) = 0,\quad j=1,\cdots,l\\ \end{aligned} mins.t.f(x)xRngi(x)0,i=1,,mhj(x)=0,j=1,,l

f ( x ) f(\bm x) f(x)为凸函数, g i ( x ) g_i(\bm x) gi(x)为凸函数, h j ( x ) h_j(\bm x) hj(x)是线性函数,则问题的可行域为
S = { x   ∣   g i ( x ) ≥ 0 , i = 1 , ⋯ &ThinSpace; , m ;   h j ( x ) = 0 , j = 1 , ⋯ &ThinSpace; , l } S = \{ \bm x\ |\ g_i(\bm x)\geq 0, i= 1,\cdots, m;\ h_j(\bm x)=0, j = 1,\cdots,l\} S={x  gi(x)0,i=1,,m; hj(x)=0,j=1,,l}

上述问题是求凸函数在凸集上的极小点,这类问题成为凸规划

重要性质:凸规划的局部极小点就是全局极小点,证明见2.1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值