UnderSampling & OverSampling
欠采样 & 过采样
UnderSampling
欠采样
EasyEnsemble
Bagging
-
算法流程
-
将多类样本随机划分成n个子集,每个子集的数量等于少数类样本的数量
-
再将每个子集与其余少数类样本结合起来分别训练一个模型
-
最后将n个模型集成
-
Balance Cascade
Boosting
-
算法流程
-
第n轮训练:从多数样本中采样一部分样本与少数类样本结合起来训练一个模型 M n M_n Mn
-
第n + 1轮训练:上一轮训练完成后,将能被 M n M_n Mn正确分类的多数样本剔除,再从现在的多数样本中采样一部分与少数类样本结合起来训练下一个模型 M n + 1 M_{n+1} Mn+1
-
最后将训练所得各个阶段的模型进行集成(加权平均)
-
NearMiss
-
NearMiss-1
- 选择到最近的K个少数类样本平均距离最近的多数类样本
-
NearMiss-2
- 选择到最远的K个少数类样本平均距离最近的多数类样本
-
NearMiss-3
- 对于每个少数类样本选择K个最近的多数类样本,目的是保证每个少数类样本都被多数类样本包围

本文介绍了在处理不平衡数据集时常用的两种方法:欠采样(如UnderSampling的EasyEnsemble和BalanceCascade)和过采样(如SMOTE、ADASYN)。过采样技术包括SMOTE、SMOTE-Borderline和ADASYN,它们通过合成少数类样本来增加样本量,而欠采样则通过减少多数类样本来平衡数据。作者还讨论了TomekLink和EditedNearestNeighbours等用于改进过采样的策略。
最低0.47元/天 解锁文章
788

被折叠的 条评论
为什么被折叠?



