时间序列相似度度量
Temporal Sequences Similarity Measurement
Dynamic Time Warping(DTW)
动态时间归整
-
Key Idea
-
两段时间序列可能存在一定的时间轴方向飘移,在这种情况下,若在同一坐标系下使用欧氏距离衡量两段序列对应逐点距离,则不能很好地反应两段时间序列的相似度
-
在大多数情况下,两个序列整体上具有非常相似的情况,但这些情况在时间轴上并不是对齐的。所以在比较它们之间相似度之前,需要将其中一个或两个序列在时间轴下扭曲(Warping)以达到对齐
-
DTW通过把时间序列进行延伸和缩短,来计算两个时间序列之间的相似性

-
-
Algorithm
-
现有两个时间序列 Q Q Q与 C C C,一段长为 m m m,一段长为 n n n,每个序列中的元素可以看作是序列的特征向量
-
若 n = m n=m n=m,直接逐点计算序列距离即可
-
若 n ≠ m n \neq m n=m,为了对齐序列,构造一个 n × m n×m n×m的矩阵,其元素 ( i , j ) (i,j) (i,j)表示 q i q_i q
-
动态时间归整(DTW):时间序列相似度测量的一种方法

最低0.47元/天 解锁文章
347

被折叠的 条评论
为什么被折叠?



