人工智能/机器学习基础知识——时间相似性度量(DTW)

动态时间归整(DTW):时间序列相似度测量的一种方法

时间序列相似度度量

Temporal Sequences Similarity Measurement

Dynamic Time Warping(DTW)

CSDN

CSDN

知乎

动态时间归整

  • Key Idea

    • 两段时间序列可能存在一定的时间轴方向飘移,在这种情况下,若在同一坐标系下使用欧氏距离衡量两段序列对应逐点距离,则不能很好地反应两段时间序列的相似度

    • 在大多数情况下,两个序列整体上具有非常相似的情况,但这些情况在时间轴上并不是对齐的。所以在比较它们之间相似度之前,需要将其中一个或两个序列在时间轴下扭曲(Warping)以达到对齐

    • DTW通过把时间序列进行延伸和缩短,来计算两个时间序列之间的相似性

    在这里插入图片描述

  • Algorithm

    • 现有两个时间序列 Q Q Q C C C,一段长为 m m m,一段长为 n n n,每个序列中的元素可以看作是序列的特征向量

    • n = m n=m n=m,直接逐点计算序列距离即可

    • n ≠ m n \neq m n=m,为了对齐序列,构造一个 n × m n×m n×m的矩阵,其元素 ( i , j ) (i,j) (i,j)表示 q i q_i q

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值