三硬币模型的变分贝叶斯EM解法

本文介绍了如何使用变分贝叶斯EM算法来估计三硬币模型中的参数π、p和q。在未知选择硬币过程的情况下,通过观察投掷硬币的结果,利用贝塔分布对硬币概率进行建模,并通过变分分布近似后验概率,最终通过变分EM算法迭代求解最优参数。
摘要由CSDN通过智能技术生成

题目:假设有3枚硬币,分别记做A,B,C。这些硬币正面出现的概率分别是 π , p q 。进行如下掷硬币实验:先掷硬币A,根据其结果选出硬币B或C,正面选硬币B,反面选硬币C;然后投掷选中的硬币,出现正面记作1,反面记作0;独立地重复 n (n=10) ,结果为1111110000…
我们只能观察投掷硬币的结果,而不知其过程,估计这三个参数 π , p q

我们假设A出现正面的概率 π 满足一个贝塔分布 Be(α) ,其中 α=(α1,α2) ,B和C出现正面的概率 p q 分别满足 Be(βi),i=1,2 ,其中

β=[β11β21β12β22]

那么,对于任意一列抽样数据 X=(x1,x2,...,xn) ,对应存在一列 Z=(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值