简单对数不等式的证明

本文介绍了如何利用自然对数来证明简单对数不等式,通过设定an和bn的表达式,以及利用对数的性质进行推导,展示了一种证明方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简单对数不等式的证明


证明:

1n+1<ln(1+1n)<1n,nN+

an=(1+1n)n,bn=(1+1n)n+1,则

an===<=(1+1n)n=k=0nCkn1nk1+k=1nn(n1)(nk+1)k!1nk1+1+12!(11n)++1n!(11n)(12n)(1n1n)1+1+12!(11n+1)++1n!(11n+1)(12n+1)(1n1n+1)+1(n+1)!(11n+1)(12n+1)(1nn+1)an+1

这说明an严格递增,另外,当n>1时,有
0<an<1+1+k=2n1k!2+k=2n1(k1)k=2+k=2n(1k11k)=31n<3

因此an收敛,极限为e

另外,由于

(1+1n11+1n)n=(1+1n21)n>1+nn21>1+1n

bn1=(1+1n1)n>(1+1n)n+1=bn
{bn}严格单调递减,且
limnbn=limnan(1+1n)=limnan=e

因此有下面的不等式
(1+1n)n<(1+1n+1)n+1<e<(1+1n+1)n+2<(1+1n)n+1,n1

以上公式取自然对数,得到

1n+1<ln(1+1n)<1n,n1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值