简单对数不等式的证明
证明:
1n+1<ln(1+1n)<1n,n∈N+
令an=(1+1n)n,bn=(1+1n)n+1,则
an===<=(1+1n)n=∑k=0nCkn1nk1+∑k=1nn(n−1)…(n−k+1)k!1nk1+1+12!(1−1n)+⋯+1n!(1−1n)(1−2n)…(1−n−1n)1+1+12!(1−1n+1)+⋯+1n!(1−1n+1)(1−2n+1)…(1−n−1n+1)+1(n+1)!(1−1n+1)(1−2n+1)…(1−nn+1)an+1
这说明an严格递增,另外,当n>1时,有
0<an<1+1+∑k=2n1k!≤2+∑k=2n1(k−1)k=2+∑k=2n(1k−1−1k)=3−1n<3
因此an收敛,极限为e
另外,由于
得bn−1=(1+1n−1)n>(1+1n)n+1=bn
即{bn}严格单调递减,且
limn→∞bn=limn→∞an(1+1n)=limn→∞an=e
因此有下面的不等式
(1+1n)n<(1+1n+1)n+1<e<(1+1n+1)n+2<(1+1n)n+1,∀n≥1
以上公式取自然对数,得到
1n+1<ln(1+1n)<1n,∀n≥1