复变函数学习概要(极精简)

ch 1 复数,复变函数

  • 点和点的邻域、内点(存在邻域是子集)、开集(全体点都是内点)
  • 区域(连通的开集)、边界、闭域(区域+边界)
  • 有界和无界,简单曲线和闭曲线,单连通和多连通
  • 复变函数
  • 函数极限
    • 定义(邻域)、充要条件(实部虚部有极限)
    • 加减乘除性质
  • 函数连续性
    • 定义(邻域)、充要条件(实部虚部连续)
    • 加减乘除和复合性质
    • 沿曲线连续

ch 2 导数,解析

导数

  • 导数的极限定义、微分的定义
  • 可导必定连续,可微=可导
  • 在点处可导的充要条件:柯西黎曼方程
    ∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} xu=yv,yu=xv

解析

  • 在点处解析(邻域内处处可导)、在区域处解析
  • 区域解析=区域可导
  • 四则运算保持区域的解析性,复合保持解析但不能逾越区域
  • 区域解析的柯西黎曼条件

初等函数

初等函数大体和实数的初等函数对应,主要注意连续性、可导性和相关的计算结果

  • 指数、三角、反三角
    注意反三角是多值的且主值(分支数)可能不止一个
    a r c s i n w = { z : s i n z = e i z + e − i z 2 = w } arcsinw=\lbrace z:sinz=\frac{e^{iz}+e^{-iz}}{2}=w\rbrace arcsinw={z:sinz=2eiz+eiz=w}
  • 对数:Ln、ln
    l n ( z ) = l n ∣ z ∣ + i a r g z ln(z)=ln|z|+iargz ln(z)=lnz+iargz
  • 乘幂:注意多值性
    a b = e b L n a a^b=e^{bLna} ab=ebLna

ch 3 积分

积分

  • 线积分及其基本性质
  • 基本计算:连续函数,光滑曲线,则可转为单变量定积分做
  • 一个基本结果: ∮ C d z ( z − z 0 ) n + 1 = { 2 π i , n = 0 0 , n > 0 \oint_C{\frac{dz}{(z-z_0)^{n+1}}}=\begin{cases}2\pi i,n=0 \\ 0,n>0\end{cases} C(zz0)n+1dz={2πi,n=00,n>0

积分的计算方法

  • 线积分的计算方法:连续函数,光滑曲线,单变量定积分
  • 复合闭路(柯西古萨):闭路变形,拆小回路
  • 和路径无关(类似牛-莱):单连通域内解析
  • 柯西积分公式:边界函数值的积分可以通过点的函数值确定
    f ( z 0 ) = 1 2 π i ∮ C f ( z ) z − z 0 d z f(z_0)=\frac{1}{2\pi i}\oint_C{\frac{f(z)}{z-z_0}dz} f(z0)=2πi1Czz0f(z)dz
  • 解析函数导数公式:通过解析函数求导来求积分
    f ( n ) ( z 0 ) = n ! 2 π i ∮ C f ( z ) ( z − z 0 ) n + 1 d z , n > 0 f^{(n)}(z_0)=\frac{n!}{2\pi i}\oint_C{\frac{f(z)}{(z-z_0)^{n+1}}dz},n>0 f(n)(z0)=2πin!C(zz0)n+1f(z)dz,n>0

ch ex 调和函数

  • 定义:实函数在区域内调和
    ∂ 2 φ ∂ x 2 + ∂ 2 φ ∂ y 2 = 0 , ( x , y ) ∈ D \frac{\partial^2\varphi}{\partial x^2}+\frac{\partial^2\varphi}{\partial y^2}=0,(x,y)\in D x22φ+y22φ=0,(x,y)D
  • 共轭调和:柯西黎曼
  • 性质:和解析的关系(实部虚部共轭调和)
  • 已知调和求解析:
    • 偏积分(利用柯西黎曼的积分凑共轭形式)
    • 不定积分(凑解析函数导数的形式)

ch 4 级数

级数与收敛

  • 数列极限:定义、充要条件(实部虚部有极限)
  • 级数收敛:部分和、收敛与发散、收敛充要条件(实部虚部收敛)、绝对收敛和条件收敛(模求和是否收敛)
  • 函数项级数:在点处收敛、处处收敛、和函数(处处收敛时定义)

幂级数

  • 收敛圆、收敛半径(阿贝尔:收敛区域由圆周划分)
  • 收敛半径求法:比值、根值
  • 四则运算性质:加减乘、复合(函数的n次幂求和)保最小的收敛半径(但实际的收敛半径可能更大)
  • 收敛圆内部,幂级数是解析的,可以逐项求导或积分

泰勒级数

  • 幂级数的展开:泰勒级数和幂级数系数对应相等(两者没有区别),可利用泰勒级数直接求解幂级数系数
    f ( z ) = ∑ n = 0 ∞ c n ( z − z 0 ) n f(z)=\sum_{n=0}^{\infty}{c_n(z-z_0)^n} f(z)=n=0cn(zz0)n
    其中
    c n = 1 n ! f ( n ) ( z 0 ) = 1 2 π i ∮ C f ( z ) ( z − z 0 ) n + 1 d z , n ≥ 0 c_n=\frac{1}{n!}f^{(n)}(z_0)=\frac{1}{2\pi i}\oint_C{\frac{f(z)}{(z-z_0)^{n+1}}dz},n\geq0 cn=n!1f(n)(z0)=2πi1C(zz0)n+1f(z)dz,n0
  • 在点处解析=在点邻域内可展泰勒,在区域解析=在区域内可展泰勒

注:

  • 泰勒级数只在圆区域内成立,不能包括边界
  • 泰勒级数受区域中心点 z 0 z_0 z0的影响

洛朗级数

  • 洛朗级数:带有正幂项和负幂项的级数
  • 洛朗级数的收敛区域是圆环区域(内外的圆周分别保证负幂项和正幂项收敛)
  • 圆环内部,洛朗级数是解析的,可以逐项求导或积分
  • 在圆环区域解析=在区域内可展洛朗
    f ( z ) = ∑ n = − ∞ ∞ c n ( z − z 0 ) n , c n = 1 2 π i ∮ C f ( ξ ) ( ξ − z 0 ) n + 1 d ξ , n 为 整 数 f(z)=\sum_{n=-\infty}^{\infty}{c_n(z-z_0)^n},c_n=\frac{1}{2\pi i}\oint_C{\frac{f(\xi)}{(\xi-z_0)^{n+1}}d\xi},n为整数 f(z)=n=cn(zz0)n,cn=2πi1C(ξz0)n+1f(ξ)dξ,n
    系数形式和泰勒是一样的
  • 利用洛朗级数公式求解积分(留数法)
    ∮ C f ( z ) d z = 2 π i c − 1 \oint_C{f(z)dz}=2\pi ic_{-1} Cf(z)dz=2πic1

注:

  • 洛朗级数只在圆环区域内成立,不能包括边界
  • 洛朗级数展开结果受中心点 z 0 z_0 z0和所选取的圆环域的影响

泰勒级数和洛朗级数的求解

  • 泰勒级数通常直接通过高阶导数求系数,并指导积分结果
  • 洛朗级数系数的直接求解方法比较少,通常通过套现有结果求解,比如
    1 1 − z = 1 + z + ⋯ + z n + … , ∣ z ∣ &lt; 1 \frac{1}{1-z}=1+z+\dots+z^n+\dots,|z|&lt;1 1z1=1+z++zn+,z<1
    或者一些泰勒展开结果
  • 情况理想时也可用积分值得到系数

ch 5 留数

关于性态的基本概念

奇点

  • 定义:函数不解析的点
  • 孤立奇点:存在处处解析的去心邻域(非孤立奇点:反之)
  • 针对孤立奇点,在这个去心邻域(圆环域)对原函数做洛朗展开:
    • 可去奇点:无负幂项(函数极限存在但不等于函数值,类似可去间断点)
    • 极点:有限个负幂项(临近该点的函数值趋于无穷)
      m级极点:负最高次幂是-m次
    • 本性奇点:无穷多个负幂项(函数极限不存在也不为无穷)

零点

  • 零点的定义 f ( z ) = ( z − z 0 ) m φ ( z ) ⇔ z 0 是 m 级 零 点 ( φ ( z ) 解 析 , φ ( z 0 ) ≠ 0 ) f(z)=(z-z_0)^m\varphi(z)\Leftrightarrow z_0是m级零点 \\ (\varphi(z)解析,\varphi(z_0)\neq0) f(z)=(zz0)mφ(z)z0m(φ(z),φ(z0)̸=0)
  • 零点都是孤立的(除非平凡情况)
  • 判定函数的奇点
    z 0 是 f ( z ) 的 m 级 极 点 ⇔ z 0 是 1 f ( z ) 的 m 级 零 点 z_0是f(z)的m级极点\Leftrightarrow z_0是\frac{1}{f(z)}的m级零点 z0f(z)mz0f(z)1m

无穷远点

  • 肯定是奇点
  • φ ( t ) = f ( 1 / z ) \varphi(t)=f(1/z) φ(t)=f(1/z),考察此函数 t = 0 t=0 t=0点的奇点类型
    • 0是可去奇点,无穷远点关于 f ( z ) f(z) f(z)也是可去奇点,f(z)无穷邻域洛朗展开不含正幂项
    • 0是m级,无穷远点也是m级,f(z)无穷邻域洛朗展开正幂项最高为m次
    • 0是本性,无穷远点也是本性,f(z)无穷邻域洛朗展开有无穷多个正幂项

留数

  • 定义:环路积分值(这个值等同于洛朗负一次幂项系数)
    R e s [ f ( z ) , z 0 ] = 1 2 π i ∮ C f ( z ) d z Res[f(z),z_0]=\frac{1}{2\pi i}\oint_Cf(z)dz Res[f(z),z0]=2πi1Cf(z)dz
  • 计算方法
    所谓留数法求积分无非就是给闭合环路一个形式上比较简洁的记号,另外通过极点理论给出了几种新的求留数方式,可用于求积分
    • 直接利用洛朗展开求解
    • 一级极点: R e s [ f ( z ) , z 0 ] = l i m z → z 0 ( z − z 0 ) f ( z ) Res[f(z),z_0]=\underset{z\to z_0}{lim}(z-z_0)f(z) Res[f(z),z0]=zz0lim(zz0)f(z)
    • m级极点: R e s [ f ( z ) , z 0 ] = 1 ( n − 1 ) ! l i m z → z 0 d n − 1 d z n − 1 ( z − z 0 ) n f ( z ) , ∀ n ≥ m Res[f(z),z_0]=\frac{1}{(n-1)!}\underset{z\to z_0}{lim}\frac{d^{n-1}}{dz^{n-1}}(z-z_0)^nf(z),\forall n\geq m Res[f(z),z0]=(n1)!1zz0limdzn1dn1(zz0)nf(z),nm
    • 分式: R e s [ f ( z ) , z 0 ] = P ( z 0 ) Q ′ ( z 0 ) Res[f(z),z_0]=\frac{P(z_0)}{Q&#x27;(z_0)} Res[f(z),z0]=Q(z0)P(z0)
      f ( z ) = P ( z ) Q ( z ) f(z)=\frac{P(z)}{Q(z)} f(z)=Q(z)P(z),分子 P ( z 0 ) P(z_0) P(z0)不为0,分母 Q ( z 0 ) = 0 Q(z_0)=0 Q(z0)=0但仅为一级零点)

无穷远点的留数

  • 定义:反向环路积分值(这个值等同于负的洛朗负一次幂项系数)
    R e s [ f ( z ) , ∞ ] = 1 2 π i ∮ C − f ( z ) d z Res[f(z),\infty]=\frac{1}{2\pi i}\oint_{C^-}f(z)dz Res[f(z),]=2πi1Cf(z)dz
  • 有限个孤立奇点,则留数之和为0(因此可以通过计算无穷远点留数来获得一些留数之和)
    R e s [ f ( z ) , ∞ ] = − ∑ ∣ z i ∣ &lt; ∞ R e s [ f ( z ) , z i ] Res[f(z),\infty]=-\sum_{|z_i|&lt;\infty}Res[f(z),z_i] Res[f(z),]=zi<Res[f(z),zi]
  • 一个公式
    R e s [ f ( z ) , ∞ ] = − R e s [ f ( 1 z ) ⋅ 1 z 2 , 0 ] Res[f(z),\infty]=-Res[f(\frac{1}{z})\cdot\frac{1}{z^2},0] Res[f(z),]=Res[f(z1)z21,0]

留数法计算积分

  • 形如 ∫ 0 2 π R ( c o s θ , s i n θ ) d θ \int_0^{2\pi}{R(cos\theta,sin\theta)d\theta} 02πR(cosθ,sinθ)dθ的积分:
    z = e i θ z=e^{i\theta} z=eiθ,则积分化为z的环路积分
  • 形如 ∫ − ∞ ∞ R ( x ) d x \int_{-\infty}^{\infty}{R(x)dx} R(x)dx的积分:
    转为求 ∮ C R ( z ) d z \oint_C{R(z)dz} CR(z)dz,其中C是包含 R ( z ) R(z) R(z)所有奇点的上半圆周
  • 形如 ∫ − ∞ ∞ R ( x ) e a i x d x ( a &gt; 0 ) \int_{-\infty}^{\infty}{R(x)e^{aix}dx}(a&gt;0) R(x)eaixdx(a>0)的积分:
    同理,转为求 ∮ C R ( z ) e a i z d z \oint_C{R(z)e^{aiz}dz} CR(z)eaizdz,其中C是包含 R ( z ) R(z) R(z)所有奇点的上半圆周

参考

高教社 西安交大编 工程数学.复变函数 第四版

  • 15
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值