RankNet(pairwise)

该文概述了从RankNet到LambdaRank再到LambdaMART的排序学习模型的发展,重点在于样本的构造方法,损失函数(如交叉熵)的定义,以及梯度计算的优化策略,包括利用对称性减少重复计算以提升效率。
摘要由CSDN通过智能技术生成

原论文:From ranknet to lambdarank to lambdamart: An overview

构造样本&损失函数

首先对同一个query下返回的连接,进行配对构造样本<Ui, Uj>代表了一对样本。用Pij代表样本的得分,si,sj代表了模型对样本的打分。
在这里插入图片描述
有了样本模型打分后,需要构造样本的真实得分。其中Sij代表了Ui,Uj用户评估的好坏程度,可以用用户行为表示,比如说用户点击了Ui,而没有点击Uj,则Sij = 1,反之Sij=-1,如果都没有点击或者都点击了则Sij=0。
在这里插入图片描述
有了真实得分和模型打分后,我们来构造损失函数,就是如下的交叉熵损失函数。
在这里插入图片描述

求梯度

首先将Pij带入到C中,可以简化后得到如下公式:
在这里插入图片描述
对于Sij=1和Sij=-1的情况,我们可以得到一个对称的C
在这里插入图片描述
利用求导法则,我们发现C对si和sj求导,是对称的。
在这里插入图片描述
如果我们想求对于Wk的导数的话,可以通过如下链式法则得到。并且计算Wk的梯度。
在这里插入图片描述

加速优化

有了以上的梯度后,对于每一个Wk都要求这样一对导数,计算效率可以进一步提升,因为C对si,sj的导数是负数对称关系,所以可以得到如下一个简化。
在这里插入图片描述
在这里插入图片描述

进一步的我们让所有的si对应的pair对进行分组,然后会得到如下简化。这样由于可以从模型打分中,提前算好所有的C对s的梯度,所以,可以避免很多的重复计算,大大提升了速度。
在这里插入图片描述
在这里插入图片描述

到这里就完成了Pairwise的模型打分到梯度计算的转化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WitsMakeMen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值