import os
import cv2
import numpy as np
import tqdm
#cv2读取一律写成默认模式
#path = 'D:\\program\\fast-neural-style-tensorflow-master\\C\\pic\\'
path = 'D:\\program\\fast-neural-style-tensorflow-master\\C\\style\\'
def different(path):#识别后的图片路径,函数主要的功能是去掉后面的_1,_2分类,然后,让后去除相同名称的,只留下文件名
all_pic = os.listdir(path)
same = []
for i in all_pic:
one = i.split('_')[0]
same.append(one)
same = list(set(same))
return same
def pic_to_tow(picpath):#原始需要分割图像文件
all_pic = os.listdir(picpath)
for i in tqdm.tqdm(all_pic):
img = cv2.imread(picpath+i)
h = int(img.shape[0]/2)
w = int(img.shape[1]/2)
save_path = path+'jieguo\\'
if not os.path.exists(save_path):
os.mkdir(save_path)
for k in range(1,3,1):
if k == 1:
cv2.imwrite(save_path+'{0}_{1}.jpg'.format(i,k),img[:,:w+20,:])#照片裁剪高和宽度
if k ==2:
cv2.imwrite(save_path + '{0}_{1}.jpg'.format(i,k),img[:, w-20:, :]) # 照片裁剪高和宽度和通道数
def hebing_pic(path):#第一个参数合并识别后的图片路径,函数功能每次提取两张,合并保存
diff_file = different(path)
print('合并图片')
for file in tqdm.tqdm(diff_file):
z = cv2.imread(path+file+'_1.jpg')#这个地方写成固定格式,可能需要修改
half_h = z.shape[0]
half_w = z.shape[1]
channels = z.shape[2]
dst = np.zeros((half_h, half_w * 2-40,channels), np.uint8)
save_path = path+'hebing\\'
if not os.path.exists(save_path):
os.mkdir(save_path)
for ii in range(1,3,1):
if ii ==1:
z = cv2.imread(path+file+'_'+str(ii)+'.jpg')#合并图片1
dst[:,:half_w-20,:] = z[:,:half_w-20,:]
if ii ==2:
z = cv2.imread(path + file + '_' + str(ii) + '.jpg')
dst[:,half_w-20:,:] = z[:, 20:, :]
cv2.imwrite(save_path+file,dst)
#cv2.waitKey()
cv2.destroyAllWindows()