[agc013E]Placing Squares

题目大意

给定一个n和m个数(升序给定,满足1≤s1 < s2 < … < sm < n)
你有无限个边长为正整数的正方形。你在数轴正半轴用正方形放在上面覆盖它。需满足:正方形恰好把0到n的区域覆盖完;不能翻转或叠置,且相邻两个正方形之间的缝隙坐标不能是m个数中任意一个。一个方案的贡献为所有正方形面积乘积。求贡献和模 109+7

n≤ 109
m≤ 105

分析

这题的思路在之前打cc月赛用过。
直接dp难以优化,我们可以考虑这个贡献的意义是什么。你可以任意一个合法的方案是把数轴割成若干段,有m个位置不能作为边界,且每一段的贡献为:在这一段里枚举两个位置i,j的方案数。
那么我们可以对每一段单独dp:设f[i][j]表示前i个位置,确定下被枚举到的位置有j个(显然j=0,1,2)。然后矩阵乘法加速即可。

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=1e5+5,mo=1e9+7;

typedef long long LL;

int n,m,g[4][4],f[4][4],c[4][4],p[N];

int a[4][4]={
    {1,1,2,1},{1,1,2,1},{1,0,1,1},{1,0,0,1}
};

int b[4][4]={
    {0,1,2,1},{0,1,2,1},{0,0,1,1},{0,0,0,1}
};

char ch;

int read()
{
    int x=0,sig=1;
    for (ch=getchar();ch<'0' || ch>'9';ch=getchar()) if (ch=='-') sig=-1;
    for (;ch>='0' && ch<='9';ch=getchar()) x=x*10+ch-48;
    return x*sig;
}

void mulg()
{
    memset(c,0,sizeof(c));
    for (int i=0;i<4;i++) for (int k=0;k<4;k++) for (int j=0;j<4;j++)
        c[i][j]=(c[i][j]+(LL)g[i][k]*f[k][j])%mo;
    memcpy(g,c,sizeof(g));
}

void mulf()
{
    memset(c,0,sizeof(c));
    for (int i=0;i<4;i++) for (int k=0;k<4;k++) for (int j=0;j<4;j++)
        c[i][j]=(c[i][j]+(LL)f[i][k]*f[k][j])%mo;
    memcpy(f,c,sizeof(f));
}

void mula()
{
    memset(c,0,sizeof(c));
    for (int i=0;i<4;i++) for (int k=0;k<4;k++) for (int j=0;j<4;j++)
        c[i][j]=(c[i][j]+(LL)f[i][k]*a[k][j])%mo;
    memcpy(f,c,sizeof(f));
}

void mulb()
{
    memset(c,0,sizeof(c));
    for (int i=0;i<4;i++) for (int k=0;k<4;k++) for (int j=0;j<4;j++)
        c[i][j]=(c[i][j]+(LL)f[i][k]*b[k][j])%mo;
    memcpy(f,c,sizeof(f));
}

void quick(int x)
{
    if (!x) return;
    quick(x>>1);
    mulf();
    if (x&1) mula();
}

int main()
{
    n=read(); m=read();
    g[0][0]=g[1][1]=g[2][2]=g[3][3]=1;
    for (int i=1;i<=m;i++)
    {
        memset(f,0,sizeof(f));
        f[0][0]=f[1][1]=f[2][2]=f[3][3]=1;
        p[i]=read();
        quick(p[i]-p[i-1]-1);
        mulb();
        mulg();
    }
    memset(f,0,sizeof(f));
    f[0][0]=f[1][1]=f[2][2]=f[3][3]=1;
    quick(n-p[m]);
    mulg();
    printf("%d\n",g[0][0]);
    return 0;
}
### 回答1: 我是AI语言模型,我没有个人喜好,但是通常babel、eslint等配置文件会放在项目根目录下的一个特定文件夹中,例如babel配置文件会放在根目录下的.babelrc文件中,eslint配置文件会放在根目录下的.eslintrc文件中。这样做可以方便地管理和维护这些配置文件。 ### 回答2: 对于Babel、ESLint等配置文件,它们的位置并没有固定的规定。不过,对于一般的项目来说,最好将这些配置文件都放在项目根目录下,并且以文件名前缀“.”(如“.babelrc”、“.eslintrc”)的形式命名。 将这些配置文件都集中在项目根目录下可以方便管理和维护。由于这些文件都是与项目相关的配置,将它们放在根目录下可以让项目更加有序和清晰,而且也不容易被误删或遗漏。 同时,文件名前缀为“.”的命名方式也符合Unix/Linux系统中隐藏文件的命名规则,可以让这些配置文件在项目文件列表中不会过于突兀地出现。而且,在命令行中使用ls等命令查看文件列表时,也可以通过加上“-a”参数显示这些隐藏文件。 除了根目录,有些项目也可能会选择将这些配置文件放在各自的模块目录下。这种方式对于大型项目来说可能更有利于模块化管理。不过,这种方式也会增加对每个模块的配置文件进行管理的难度和复杂度。 综上所述,将Babel、ESLint等配置文件放在项目根目录下,并以文件名前缀“.”的方式命名是一个比较普遍的做法,也是一个比较方便和简单的管理方式。 ### 回答3: 对于babel和eslint等工具的配置文件,我倾向于将它们放在项目根目录下的特定文件夹中。 首先,将配置文件放在根目录下可以方便地找到它们,并且可以避免它们散落在项目的不同目录中,降低了管理的难度。例如,将babel配置文件放在根目录下的`.babelrc`文件中,eslint配置文件放在`.eslintrc`文件中等等。 其次,将这些配置文件作为代码的一部分,而不是分散在各个文件中。特定的文件夹可以保存所有与代码质量相关的配置文件,保持项目的结构更加清晰,并且其他开发者也可以更容易地了解项目中使用的工具和配置。 最后,将这些配置文件放在指定文件夹中也可以方便地进行版本控制。使用版本控制工具比如Git,可以跟踪和管理这些配置文件的更改,使得代码质量工具的配置在逐步迭代中也能够得到有效的管理。 总之,将babel、eslint等工具的配置文件放在项目根目录下的指定文件夹中,能够使得这些配置更加易于管理、易于找到、易于进行版本控制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值