文章开始前,先推荐一个公众号,请点击下方卡片关注:
在软件开发的世界里,性能是永远的焦点之一。如果你做过性能测试,会经常发现开发人员写的 SQL 查询可能会让数据库承受不必要的负担,从而导致性能问题。今天,让我们通过一些案例,深入探讨一下常见的性能问题,并从性能测试人员的角度提出一些建议和解决方案。
一、直接上案例
案例1:索引遗漏导致的性能问题
一天,小李在一家电商公司的项目中发现了一个严重的性能问题。他们的订单查询页面加载速度极慢,用户体验极差。经过分析,小李发现开发人员在订单表上执行了一个SQL 查询,而此sql查询比较慢,小李通过查看数据库表结构发现该表上缺乏合适的索引。
SQL 查询:
SELECT * FROM orders WHERE customer_id = 12345 AND order_date > '2024-01-01 02:53:30';
问题分析:
这个查询在执行时,数据库需要全表扫描来找到符合条件的记录,因为没有针对 customer_id 和 order_date 字段的索引。这导致了巨大的性能损耗,尤其是当订单表中数据量巨大时。
解决方案:
为 customer_id 和 order_date 字段分别创建索引,优化查询速度。
案例2:Where 条件后字段顺序导致的性能问题
又有一次,小李遇到了一个哭笑不得的案例。为了查询某个人某一天的订单数量,他们写了这样一个 SQL 查询:
SQL 查询:
SELECT COUNT(*) FROM orders WHERE order_date >= '2023-01-01 00:00:00' AND order_date <= '2023-01-01 23:59:59' AND customer_id = 12345;
问题分析:
尽管这个查询的条件是正确的,但是字段的顺序却不太合理。由于 order_date 的筛选条件在 customer_id 之后,即使有索引也不能充分利用。这样会导致数据库不得不进行额外的工作来满足查询条件,降低了查询效率。
解决方案:
优化查询条件的顺序,将高选择性的字段放在前面。正确的 SQL 应该是:
SELECT COUNT(*) FROM orders WHERE customer_id = 12345 AND order_date >= '2023-01-01 00:00:00' AND order_date <= '2023-01-01 23:59:59' ;
二、性能测试人员的排查步骤:更深入的探索
在解决性能问题的过程中,性能测试人员需要采取一系列深入的排查步骤,以确保问题得到有效解决,并且系统能够持续稳定高效地运行。
1-收集性能数据:
要确保收集到的性能数据全面准确,涵盖了各个方面的性能指标。这包括查询执行时间、数据库资源利用率、系统负载情况等等。只有通过充分的数据收集,才能够对系统的性能问题有全面的了解。
2-分析 SQL 查询:
对于引起性能问题的 SQL 查询,需要进行深入的分析。这包括查询执行计划、索引使用情况、数据访问路径等方面的分析。通过深入分析 SQL 查询,可以找出性能瓶颈所在,并提出针对性的优化建议。
3-检查索引情况:
确保表上的字段有合适的索引,尤其是经常用于筛选和排序的字段。对于索引缺失或不合适的情况,需要及时进行优化,以提高查询效率。
4-优化查询条件:
优化查询条件的顺序和结构,使其更符合索引的使用规则。合理的查询条件顺序和结构可以大大提高查询效率,减少数据库的负载。
5-执行性能测试:
在应用优化之后,需要再次进行性能测试,以验证优化效果。通过性能测试,可以检验优化方案的有效性,确保系统性能得到了有效提升。
6-持续监控:
性能优化是一个持续改进的过程,需要不断地进行监控和优化。定期监控系统的性能,及时发现和解决潜在的性能问题,可以保证系统持续稳定高效地运行。
通过以上排查步骤,性能测试人员可以全面深入地分析和解决系统的性能问题,确保系统能够持续稳定高效地运行。
三、挑战与合作
性能优化是一个复杂而又充满挑战的过程,需要开发人员和测试人员的密切合作和共同努力。只有通过团队的协作和共同努力,才能够有效地解决系统的性能问题,提升系统的性能和用户体验。
但是,性能优化并不是一成不变的。随着系统的不断发展和用户的不断增长,性能问题可能会随时出现。因此,我们需要保持敏锐的观察力和持续的改进意识,不断地进行性能优化和调整,以适应不断变化的需求和挑战。
现在,我想邀请你们分享一下你们在性能优化方面的经验和故事。你们遇到过哪些有趣的性能问题?你们是如何解决这些问题的?欢迎在评论区分享你们的故事和想法,让我们一起探讨性能优化的奥秘!