stage-wise training 分阶段训练

本文探讨了深度神经网络训练中的阶段式学习策略,通过将学习过程分解为逐步完成的子任务,改善高参数量带来的挑战。这种方法使得网络在早期阶段学习数据的大致特征,后期阶段则学习更精细的细节。分阶段训练还能产生正则化效果,增强泛化能力,防止过拟合。实验结果在图像分类任务上验证了这种方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Stage-wise Training: An Improved Feature Learning Strategy for Deep Models


阶段式 训练 :深层模型的改进特征学习策略

   深度神经网络目前处于许多机器学习应用的现有技术水平,但由于它们的参数维数非常高,因此在这种网络的训练中仍然存在限制。在本文中,我们展示了使用阶段式学习策略可以提高网络培训绩效,在这种策略中,学习过程被分解成一系列逐步完成的相关子任务。其思想是将信息逐渐注入网络,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值