牛客网暑期ACM多校训练营(第二场) G 二分 + 双指针

本博客探讨了一道关于在一维坐标轴上移动货物的问题,其中目标是在不超过特定代价T的情况下,使最多货物位于同一箱内。关键解法基于物品坐标中位数和连续选择的性质,采用二分查找配合双指针策略,以O(nlog∑a[i])的时间复杂度求解。
摘要由CSDN通过智能技术生成

题目链接


题意:
在一维坐标轴上给定 n n n个箱子的坐标,第 i i i个箱子的坐标为 x [ i ] x[i] x[i],同时每个箱子里装有一些货物,第 i i i个箱子装有 a [ i ] a[i] a[i]个货物,将第 i i i个箱子的一个货物移动到第 j j j个箱子的代价为 2 ∗ a b s ( x [ i ] − x [ j ] ) 2*abs(x[i] - x[j]) 2abs(x[i]x[j]),问在总代价不超过 T T T的情况下,通过移动最多能让多少个货物在同一个箱子?


思路:

本题的解法基于两点性质:
一、对于分布在一维坐标轴的 n n n个物品,当需要将其集中于一点时,总移动量最少的方案其集中点一定是这 n n n个物品坐标的中位数(若 n n n为偶数,最中间的两个数选为集中点的代价相同)。

二、从若干个货物中选取 n n n个货物集中,那么代价最小的方案中,这 n n n个货物一定连续,即不存在一个没有被选择的物品,其左右两个物品均被选择。

以上两点性质非常显然,故我们可以二分答案,随后通过双指针对于每一个满足答案的区间进行枚举,O(1)计算其集中到一点的总代价值,时间复杂度 O ( n l o g ∑ a [ i ] ) O(nlog \sum a[i]) O(nloga[i])


代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<vector>
using namespace std;
typedef long long ll;

const int A = 5e5 + 10;
ll T, x[A], a[A], sum[A], pre[A];
int n, st, ed, Mid, add;

ll solve(ll mid, int c){
    return 2 * (x[mid] * (sum[mid-1] + sum[mid] - sum[st-1] - sum[ed])
            + (pre[ed] + pre[st-1] - pre[mid] - pre[mid-1]) - add * (c?x[mid] - x[st]:x[ed] - x[mid]));
}

bool check(ll aim) {
    st = Mid = 1;
    ed = 0;
    for (st = 1; st <= n; st++) {
        while (ed < n && sum[ed] - sum[st - 1] < aim) ed++;
        if (sum[ed] - sum[st - 1] < aim) break;
        add = sum[ed] - sum[st-1] - aim;
        while(Mid < n && solve(Mid+1, 0) < solve(Mid, 0)) Mid++;
        if (solve(Mid, 0) <= T) return true;
    }
    ed = Mid = n;
    st = n + 1;
    for (ed = n; ed >= 1; ed--) {
        while(st > 1 && sum[ed] - sum[st - 1] < aim) st--;
        if (sum[ed] - sum[st - 1] < aim) break;
        add = sum[ed] - sum[st - 1] - aim;
        while(Mid > 1 && solve(Mid-1, 1) < solve(Mid, 1)) Mid--;
        if (solve(Mid, 1) <= T) return true;
     }
    return false;
}

int main(){
    scanf("%d%lld", &n, &T);
    for (int i = 1; i <= n; i++) {
        scanf("%lld", &x[i]);
    }
    sum[0] = pre[0] = 0;
    for (int i = 1; i <= n; i++) {
        scanf("%lld", &a[i]);
        sum[i] = sum[i-1] + a[i];
        pre[i] = pre[i-1] + a[i] * x[i];
    }

    ll l = 0, r = sum[n], ans = 0;
    while (l <= r) {
        ll mid = (l+r) >> 1;
        if (check(mid)) {
           l = mid + 1;
           ans = mid;
        }
        else{
            r = mid - 1;
        }
    }
    printf("%lld\n", ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值