题意:
在一维坐标轴上给定
n
n
n个箱子的坐标,第
i
i
i个箱子的坐标为
x
[
i
]
x[i]
x[i],同时每个箱子里装有一些货物,第
i
i
i个箱子装有
a
[
i
]
a[i]
a[i]个货物,将第
i
i
i个箱子的一个货物移动到第
j
j
j个箱子的代价为
2
∗
a
b
s
(
x
[
i
]
−
x
[
j
]
)
2*abs(x[i] - x[j])
2∗abs(x[i]−x[j]),问在总代价不超过
T
T
T的情况下,通过移动最多能让多少个货物在同一个箱子?
思路:
本题的解法基于两点性质:
一、对于分布在一维坐标轴的
n
n
n个物品,当需要将其集中于一点时,总移动量最少的方案其集中点一定是这
n
n
n个物品坐标的中位数(若
n
n
n为偶数,最中间的两个数选为集中点的代价相同)。
二、从若干个货物中选取 n n n个货物集中,那么代价最小的方案中,这 n n n个货物一定连续,即不存在一个没有被选择的物品,其左右两个物品均被选择。
以上两点性质非常显然,故我们可以二分答案,随后通过双指针对于每一个满足答案的区间进行枚举,O(1)计算其集中到一点的总代价值,时间复杂度 O ( n l o g ∑ a [ i ] ) O(nlog \sum a[i]) O(nlog∑a[i])
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<vector>
using namespace std;
typedef long long ll;
const int A = 5e5 + 10;
ll T, x[A], a[A], sum[A], pre[A];
int n, st, ed, Mid, add;
ll solve(ll mid, int c){
return 2 * (x[mid] * (sum[mid-1] + sum[mid] - sum[st-1] - sum[ed])
+ (pre[ed] + pre[st-1] - pre[mid] - pre[mid-1]) - add * (c?x[mid] - x[st]:x[ed] - x[mid]));
}
bool check(ll aim) {
st = Mid = 1;
ed = 0;
for (st = 1; st <= n; st++) {
while (ed < n && sum[ed] - sum[st - 1] < aim) ed++;
if (sum[ed] - sum[st - 1] < aim) break;
add = sum[ed] - sum[st-1] - aim;
while(Mid < n && solve(Mid+1, 0) < solve(Mid, 0)) Mid++;
if (solve(Mid, 0) <= T) return true;
}
ed = Mid = n;
st = n + 1;
for (ed = n; ed >= 1; ed--) {
while(st > 1 && sum[ed] - sum[st - 1] < aim) st--;
if (sum[ed] - sum[st - 1] < aim) break;
add = sum[ed] - sum[st - 1] - aim;
while(Mid > 1 && solve(Mid-1, 1) < solve(Mid, 1)) Mid--;
if (solve(Mid, 1) <= T) return true;
}
return false;
}
int main(){
scanf("%d%lld", &n, &T);
for (int i = 1; i <= n; i++) {
scanf("%lld", &x[i]);
}
sum[0] = pre[0] = 0;
for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
sum[i] = sum[i-1] + a[i];
pre[i] = pre[i-1] + a[i] * x[i];
}
ll l = 0, r = sum[n], ans = 0;
while (l <= r) {
ll mid = (l+r) >> 1;
if (check(mid)) {
l = mid + 1;
ans = mid;
}
else{
r = mid - 1;
}
}
printf("%lld\n", ans);
return 0;
}