牛客网暑期ACM多校训练营(第三场)F 思维 + 线段树

题目链接


题意:
给定一个长度为 n n n的十六进制数,和 m m m次询问,询问格式为 ( o p , x , y ) (op, x, y) (op,x,y),当 o p = 1 op = 1 op=1,表示将第 x x x个数位的数字改为 y y y,当 o p = 2 op = 2 op=2时,问区间 [ x , y ] [x,y] [x,y]的价值为多少,其中区间 [ l , r ] [l,r] [l,r]区间的价值定义为:
取出[l,r]中的所有子串 v v v(不要求连续),计算 S O D ( v ) SOD(v) SOD(v),则区间价值为:
∑ ( n u m b e r   o f   S O D ( v ) = i ) ∗ 102 1 i \sum (number \ of \ SOD(v) = i) * 1021^i (number of SOD(v)=i)1021i m o d ( 1 e 9 + 7 ) mod (1e9 + 7) mod(1e9+7)

S O D ( v ) SOD(v) SOD(v)的定义为:

def SOD(v):
	if v < 16: 
		return v
	else:
		return SOD(sum of digit of v in hexadecimal)

思路:
首先对于 S O D ( v ) SOD(v) SOD(v),由同余定理,可以得到其等价于:

def SOD(v):
	if v == 0: 
		return 0
	elif v % 15 == 0:
		return 15
	else:
		return v % 15

故对于区间价值的计算, i i i只有16种取值。
故可以使用线段树来维护区间中所有子序列的SOD值为 i i i的个数。
其中区间合并类似于归并排序,需要考虑两个子区间的相互影响和独立性,故合并代码如下:

void push_up(int rt){
    for (int i = 0; i < 16; i++) {
        Tree[rt].sum[i] = (Tree[lson].sum[i] + Tree[rson].sum[i]) % mod;
    }
    for (int i = 0; i < 16; i++) {
        for (int j = 0; j < 16; j++) {
            int x = (i + j) % 15;
            if (!i && !j) x = 0;
            else if (x == 0) x = 15;
            Tree[rt].sum[x] = (Tree[rt].sum[x] + Tree[lson].sum[i] * Tree[rson].sum[j] % mod) % mod;
        }
    }
}

其他就是经典的线段树操作了。
此题得解。


代码:

#include<algorithm>
#include<cmath>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long ll;
#define lson rt<<1
#define rson rt<<1|1
const int mod = 1e9 + 7;
const int A = 1e5 + 10;
const int B = 20;
class Seg_Tree{
public:
    int l,r;
    ll sum[B];
}Tree[A<<2];
char s[A], t[B];
ll fac[B], res[B];
int n,q;
  
void Init(){
    fac[0] = 1;
    for (int i = 1; i < B; i++) {
        fac[i] = fac[i - 1] * 1021 % mod;
    }
}
  
int get_val(char c){
    if (c >= '0' && c <= '9') return c - '0';
    return c - 'A' + 10;
}
  
void push_up(int rt){
    for (int i = 0; i < 16; i++) {
        Tree[rt].sum[i] = (Tree[lson].sum[i] + Tree[rson].sum[i]) % mod;
    }
    for (int i = 0; i < 16; i++) {
        for (int j = 0; j < 16; j++) {
            int x = (i + j) % 15;
            if (!i && !j) x = 0;
            else if (x == 0) x = 15;
            Tree[rt].sum[x] = (Tree[rt].sum[x] + Tree[lson].sum[i] * Tree[rson].sum[j] % mod) % mod;
        }
    }
}
  
void build_Tree(int rt, int l, int r){
    Tree[rt].l = l, Tree[rt].r = r;
    for (int i = 0; i < 16; i++) Tree[rt].sum[i] = 0;
    if (l == r) {
        Tree[rt].sum[get_val(s[l])] = 1;
        return;
    }
    int mid = (l + r) >> 1;
    build_Tree(lson, l, mid);
    build_Tree(rson, mid + 1, r);
    push_up(rt);
}
  
void update(int rt, int pos, int c){
    int l = Tree[rt].l, r = Tree[rt].r;
    if (l == r) {
        for (int i = 0; i < 16; i++) Tree[rt].sum[i] = 0;
        Tree[rt].sum[c] = 1;
        return;
    }
    int mid = (l + r) >> 1;
    if (pos <= mid) update(lson, pos, c);
    else            update(rson, pos, c);
    push_up(rt);
}
  
void Merge(ll* now){
    ll tem[B] = {0};
    for (int i = 0; i < 16; i++) tem[i] = (res[i] + now[i]) % mod;
    for (int i = 0; i < 16; i++) {
        for (int j = 0; j < 16; j++) {
            int x = (i + j) % 15;
            if (!i && !j) x = 0;
            else if (x == 0) x = 15;
            tem[x] = (tem[x] + res[i] * now[j] % mod) % mod;
        }
    }
    for (int i = 0; i < 16; i++) res[i] = tem[i];
}
  
void query(int rt, int st, int ed){
    int l = Tree[rt].l, r = Tree[rt].r;
    if (st <= l && r <= ed) {
        Merge(Tree[rt].sum);
        return;
    }
    int mid = (l + r) >> 1;
    if (st <= mid) query(lson, st, ed);
    if (ed >  mid) query(rson, st, ed);
}
  
int main(){
    Init();
    scanf("%d%d", &n, &q);
    scanf("%s", s+1);
    build_Tree(1, 1, n);
    while (q--) {
        int op;
        scanf("%d", &op);
        if (op == 1) {
            int p;
            scanf("%d%s",&p,t);
            update(1, p, get_val(t[0]));
        } else {
            int l, r;
            scanf("%d%d", &l, &r);
            query(1, l, r);
            ll ans = 0;
            for (int i = 0; i < 16; i++) {
                ans = (ans + fac[i] * res[i] % mod) % mod;
                res[i] = 0;
            }
            printf("%lld\n", ans);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值