ASP.NET (Core)WebApi接收参数

本文详细介绍了ASP.NET Core WebApi中contentType、dataType的选择与使用,参数绑定机制,以及FromUri和FromBody的区别,通过实例演示了如何在不同场景下正确处理JSON数据传输。重点在于理解不同类型请求的数据处理和模型绑定技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、ASP.NET (Core)WebApi参数传递实操演练

1、什么是contentTypedataType

$.ajax contentTypedataType , contentType 主要设置你发送给服务器的格式,dataType设置你收到服务器数据的格式。

更简单的解释:
contentType: 告诉服务器,我要发什么类型的数据。
dataType:告诉服务器,我要想什么类型的数据。

http 请求中,getpost 是最常用的。在 jquery 的 ajax 中, contentType都是默认的值:application/x-www-form-urlencoded,这种格式的特点就是,name/value 成为一组,每组之间用 & 联接,而 namevalue 则是使用 = 连接。如:wwwh.baidu.com/q?key=fdsa&lang=zh 这是get , 而 post 请求则是使用请求体,参数不在 url 中,在请求体中的参数表现形式也是: key=fdsa&lang=zh的形式。

键值对这样组织在一般的情况下是没有什么问题的,这里说的一般是,不带嵌套类型JSON,也就是 简单的JSON,形如这样:

{a:1,b:2,c:3}

但是在一些复杂的情况下就有问题了。例如在 ajax 中你要传一个复杂的 json 对像,也就说是对象嵌数组,数组中包括对象,如果你这样传:

{data: {a: [{x:2}]  }}

这个复杂对象,application/x-www-form-urlencoded 这种形式是没有办法将复杂的 JSON 组织成键值对形式(当然也有方案这点可以参考) ,你传进去可以发送请求,但是服务端收到数据为空, 因为 ajax 没有办法知道怎样处理这个数据。

这怎么可以呢?

聪明的程序员发现 http 还可以自定义数据类型,于是就定义一种叫 application/json 的类型。这种类型是 text , 我们 ajax 的复杂JSON数据,用 JSON.stringify序列化后,然后发送,在服务器端接到然后用 JSON.parse 进行还原就行了,这样就能处理复杂的对象了。

$.ajax({ 
dataType: 'json', 
contentType: 
'application/json', 
data: JSON.stringify({a: [{b:1, a:1}]}
)})

2、什么是参数绑定(Parameter Binding)?

Asp.NET Web API中Controller是如何解析从客户端传递过来的数据,然后赋值给Controller的参数的,也就是参数绑定或者模型绑定。

常见的绑定方式有如下四种。

  1. 路由值(Route Values):通过导航到路由如{controller}/{action}/{id}此时将绑定到id参数。
  2. 查询字符串(QueryStrings):通过查询字符串中的参数来绑定,如name=Jeffcky&id=1,此时nameid将进行绑定。
  3. 请求Body(Body):通过在POST请求中将数据传入到Body中此时将绑定如上述Person对象中。
  4. 请求Header(Header):绑定数据到Http中的请求头中,这种相对来说比较少见。

所以通过上述讲述我们知道有多种方式将数据从客户端传递到服务端,然后模型绑定会自动为我们创建正确的方法来绑定到后台参数中,简单和复杂的类型参数都会进行绑定。

3、ASP.NET WebAPI中FromUriFromBody两类特性区别

1)、【FromUri】特性

应用【FromUri】特性,Web API Action中参数将从URL中解析数据。

查询字符串(QueryStrings):通过查询字符串中的参数来绑定,如name=Jeffcky&id=1,此时nameid将进行绑定,对应WebAPI中媒体

类型格式化器JsonMediaTypeFormatter,对应的content-type是:application/json

2)、【FromBody】特性

应用【Frombody】特性,Web API Action中参数将从请求体(Request Body),并且通过媒体类型格式化器获取和绑定数据。

请求Body(Body):通过在POST请求中将数据传入到Body中此时将绑定如上述Person对象中,对应WebAPI中媒体类型格式化器

FormUrlEncodedMediaTypeFormatter,对应的content-type是:application/x-www-form-urlencoded

注意:对多个参数使用FromBody不起作用!!!

二、实战运用(PS:一般这几种场景就能够满足我们实际开发工作需要了)

1、ASP.NET WebApi参数传递实操演练

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

2、ASP.NET Core WebApi参数传递实操演练

在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述


在这里插入图片描述

三、总结

其实说了这么多,简单类型绑定和复杂类型绑定在本质上没什么太大的区别,真正的区别在于数据绑定是通过GET请求还是POST请求 。
说白了就是【FromUri】特性和【FromBody】特性之间的区别。

FromUri】和【FromQuery】 :一般用与单个简单类型的参数。

FromBody】 :一般用于将多个简单类型的参数打包成一个复杂对象类型的参数 。

注意:对多个参数使用FromBody不起作用,即也就是说,[FromBody] 修饰的参数只能有一个。


.NetCore WebApi传输参变化

.NetCore 的 WebApi,一般以前的mvc5,继承自 ApiController ,则是WebApi,采用独有的管道处理模型,再Core中,一般是 继承自 ControllerBase,控制器类上标注 [ApiController]

1.前端代码

//NetCoreWebApi中,传输 application/json; 格式的,后端无需加[FormBody]也能拿到值
$.ajax({
 type: "post",
   url: "/api/WebApi/ww",
   data: JSON.stringify( { a: 1, b: 2,c: 4,"yy":99,"bb":"匹配"} ),  //如果没有序列化,后端获取不到,序列化了,WebApi不需要加 FormBody,能拿到值,contentType: "application/json;charset=utf-8"//不加上 默认不是表单的那种也不是json那种
    contentType: "application/x-www-form-urlencoded",//这个类型无法指定
    data: { a: 1, b: 2,c: 4,"yy":99,"bb":"匹配"},
})

2.后端代码

 [HttpPost]
[Route("ww")]
 public string Po(KJ k, int yy, string bb)
 {
     //k null
     //yy 0
     //b  null
 }

3.结论:

因为前端指定了,传输类型为,"application/x-www-form-urlencoded",就算不写contentType,它的默认值也是“application/x-www-form-urlencoded”,但是指定失败
最后的请求格式:application /problem+json; charset=utf-8
报错为:415
解决:指定为 json传输,序列化后传输,后端就可以拿到值 (可以不用[FormBody]),核心都在传输的 contentType

[HttpPost]
[Route("E3")]
public string fdasfs([BindAttribute(include: "a,b")] [FromBody] KJ p, int r = 0)
{
 //******************.Net Core Mvc WebApi的post的使用**************************/
 //1.前端指定的application/json,传输json数据,不管有没有[FromBody]都可以拿到值
   /*2.前端指定的application/x-www-form-urlencoded,传输json数据或者json对象,失败,
     *明明设置了传输类型,但是却成了 application /problem+json; charset=utf-8,导致请求失败
     3.如果传入的除了一个实体,还有其他参数,那就都绑定不上 都没有拿到值 
      前端是这样的:{user: {a: 1, b: 9}, r: 99} 就是不行的,
      {a: 1, b: 9}可行的
       必须整成一个实体
       /* var json = { user: { a: 1, b: 9,  }, r: 99 };
$.ajax({
   url: "/api/mm/E3",
   type: "post",
   //contentType:"application/x-www-form-urlencoded",//写成这种,写了也白写,最终传输类型被覆盖
   contentType:"application/json",
   data:JSON.stringify(json)
}); *//* 4.NetCore的 BindAttribute特性 在  contentType:"application/json 不起作用,不能绑定指定的属性,在
  contentType:"application/x-www-form-urlencoded  表单中完全可以,过滤掉不需要的属性
   FormData    
    a:1
    b:9
    */
   return "OK";
}
### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值