【并查集专题】格子游戏

这篇博客探讨了一种古老游戏的策略,玩家在n * n的点阵上轮流画边,目标是形成封闭的圈。通过并查集算法,可以判断游戏何时结束或是否会出现平局。文章提供了输入输出示例,并解释了如何利用并查集来检测图中是否存在环,以确定游戏结束的步骤。
摘要由CSDN通过智能技术生成

【并查集专题】格子游戏

题目描述

Alice和Bob玩了一个古老的游戏:首先画一个n * n的点阵(下图n = 3) 接着,他们两个轮流在相邻的点之间画上红边和蓝边:

直到围成一个封闭的圈(面积不必为1)为止,“封圈”的那个人就是赢家。因为棋盘实在是太大了(n <= 200),他们的游戏实在是太长了!他们甚至在游戏中都不知道谁赢得了游戏。于是请你写一个程序,帮助他们计算他们是否结束了游戏?

输入

输入数据第一行为两个整数n和m。m表示一共画了m条线。以后m行,每行首先有两个数字(x, y),代表了画线的起点坐标,接着用空格隔开一个字符,假如字符是"D ",则是向下连一条边,如果是"R "就是向右连一条边。输入数据不会有重复的边且保证正确。

输出

输出一行:在第几步的时候结束。假如m步之后也没有结束,则输出一行“draw”。

样例输入

3 5
1 1 D
1 1 R
1 2 D
2 1 R
2 2 D

样例输出

4

数据范围限制

这是一道并查集的题。众所周知,树里面是没有环的。所以在“封圈”之前,棋盘上的画出来的图,都是若干棵树。这道题的重点是如何判断是否“封圈”,如果要连上的两个节点都源自同一棵树(可以是祖先与孩子,也可以是兄弟),那就一定会形成一个环。如果源自不同的树,那就连起来,因为它们一定不会形成环。

#include<cstdio>
int n,m,f[40005],x,y
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值