平面向量快速入门

本文详细介绍了向量的概念,包括其作为有向线段的几何表示,数学中的运算简化,以及在物理中的矢量表示,如位移、速度和力。涵盖了向量的方向、长度、坐标表示及其加减乘运算,包括三角形定则、平行四边形定则和向量的数量积。
摘要由CSDN通过智能技术生成

概念

什么是向量?
请添加图片描述
这就是向量。

从图上可以看出,向量是一条带箭头的线,准确来说,向量是一条有向线段

那么向量有什么样的意义呢?

在数学中,它可以简化运算,将复杂的几何问题转化为简单的向量运算。

那它又有怎样的实际意义呢?

它可以表示物理中的矢量,可以表示位移、速度、力等物理量,同时可以以向量运算代替物理量运算,达到简化的目的。

与向量相对的,像 1 1 1 1.5 1.5 1.5 1 2 \dfrac{1}{2} 21 π \pi π 这类数,我们称作数量

性质

向量既然是一条有向线段,决定向量的因素有哪些呢?

  1. 向量的方向
  2. 向量的长度

注意,没有向量的位置!也就是说,向量与它的位置无关

请添加图片描述
图中,红色的向量与蓝色的向量完全相等

如果两个向量方向相同或相反,我们称这两个向量平行,也称它们共线。如果两个向量夹角为 90 90 90 度,我们称它们垂直

表示

对于一个向量,如果它的起点为 A A A,终点为 B B B,如图:

请添加图片描述
那么我们称它为向量 A B AB AB,记作 A B → \overrightarrow{AB} AB

注意,起点和终点的顺序不能颠倒,像 B A → \overrightarrow{BA} BA 就是错误的。

对于下图:
请添加图片描述
我们称它为向量 a a a,手写时记作 a ⃗ \vec{a} a ,在印刷本中一般记作加粗的a

那么我们对于向量的长度也给予一个符号表示,对于 A B → \overrightarrow{AB} AB ,它的长度记为 ∣ A B → ∣ |\overrightarrow{AB}| AB 。向量的长度一般称为向量的

运算

既然向量可以像数量一样表示,那么向量能否像数量一样运算呢?显然,是可以的。

前面,我们说过,向量可以表示矢量,我们以位移为例,分析向量的运算。

现在一个物体从点 A A A运动到点 B B B,表示为 A B → \overrightarrow{AB} AB

请添加图片描述
再从点 B B B运动到点 C C C,表示为 B C → \overrightarrow{BC} BC

请添加图片描述
那么它的总位移是什么?

显然,是 A C → \overrightarrow{AC} AC

请添加图片描述

所以我们可以得到向量加法的运算方式:
A B → + B C → = A C → \overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC} AB +BC =AC

对于上述这种方法,我们称之为三角形定则,因为两个向量与它们的和成三角形。

而当我们脱离现实,回到数学本身上来,对于首尾不相接的向量,我们又怎样进行运算呢?

请添加图片描述
我们知道,向量与位置无关。首先将 C D → \overrightarrow{CD} CD 平移,使得 C C C B B B重合:

请添加图片描述
然后进行加法即可。

那我们还有其他的方法进行加法运算吗?

对于下面的两个向量:
请添加图片描述
我们将它们的起点对齐:

请添加图片描述
然后做平行四边形:

请添加图片描述

连对角线:

请添加图片描述

结果即是 A E → \overrightarrow{AE} AE

上面这种方法,我们称之为平行四边形定则

平行四边形定则以及三角形定则是求平面向量加法的方式,它们可以借助平行四边形以及三角形理解,而它们又符合实际情况。位移、速度、力的合成均可视作向量的加法。

那么,减法又如何定义呢?

我们知道,在数的运算中,减法是加法的逆运算。在向量中也是如此。对于下图:
请添加图片描述

我们知道, A B → + B C → = A C → \overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC} AB +BC =AC ,则有:
A C → − A B → = B C → \overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC} AC AB =BC
A C → − B C → = A B → \overrightarrow{AC}-\overrightarrow{BC}=\overrightarrow{AB} AC BC =AB

那么减法又该怎样运算呢?对于向量 a ⃗ \vec{a} a 和向量 b ⃗ \vec{b} b ,我们将 a ⃗ \vec{a} a 的起点和 b ⃗ \vec{b} b 的起点对齐,从 b ⃗ \vec{b} b 的终点向 a ⃗ \vec{a} a 的终点做向量 c ⃗ \vec{c} c ,则有
c ⃗ = a ⃗ − b ⃗ \vec{c}=\vec{a}-\vec{b} c =a b

这样,我们就得到了减法的运算法则。

那么,向量有没有乘法运算呢?

我们将向量的乘法分为两种:向量与数量的乘法 和 向量与向量的乘法。

向量与数量的乘法称为数乘,记作 a ⃗ = λ b ⃗ \vec{a}=\lambda\vec{b} a =λb ,其中 λ \lambda λ 为实数。

数乘的结果分为三种:

  1. λ > 0 \lambda>0 λ>0 时,向量方向不变,模变为原来的 λ \lambda λ 倍。
  2. λ = 0 \lambda=0 λ=0 时,模变为 0 0 0。模为 0 0 0 的向量称为零向量,记作 0 ⃗ \vec{0} 0 0,零向量的方向无法确定,但认为它与任意向量平行,也与任意向量垂直。
  3. λ < 0 \lambda<0 λ<0 时,向量方向与原来相反,模变为原来的 ∣ λ ∣ |\lambda| λ 倍。

这样,如果向量 a ⃗ \vec{a} a 可以表示为 λ b ⃗ \lambda\vec{b} λb ,则 a ⃗ \vec{a} a b ⃗ \vec{b} b 平行。

向量与向量的乘法有两种,内积外积。这里只介绍内积。

内积,又称数量积、点积,表示为 a ⃗ ⋅ b ⃗ \vec{a}\cdot\vec{b} a b 。注意,不能是 a ⃗ × b ⃗ \vec{a}\times\vec{b} a ×b ,这是外积的表示法。

内积的结果是一个数量,而不是向量:
a ⃗ ⋅ b ⃗ = ∣ a ⃗ ∣ ∣ b ⃗ ∣ c o s θ \vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|cos\theta a b =a ∣∣b cosθ

其中 θ \theta θ a ⃗ \vec{a} a b ⃗ \vec{b} b 的夹角。

因为 c o s   90 ° = 0 cos\ 90°=0 cos 90°=0,所以我们可以得到:
a ⃗ ⋅ b ⃗ = 0 ⇔ a ⃗ ⊥ b ⃗ \vec{a}\cdot\vec{b}=0 \Leftrightarrow \vec{a} \perp \vec{b} a b =0a b

坐标

我们要是想把一个向量在平面直角坐标系上表示出来,我们应该怎样表示呢?

按照我们表示线段的方式,应该通过两个端点的坐标来表示。

可是向量与线段有什么不同之处?

向量与位置无关!

我们可以将线段平移,使得起点与原点重合,就可以用终点的坐标表示向量的坐标了!

在这里插入图片描述

平移:

在这里插入图片描述
则这个向量的坐标为 ( 3 , 1 ) (3,1) (3,1)

坐标运算

那么,有了坐标,我们是否可以用坐标进行运算呢?

a ⃗ = ( x 1 , y 1 ) \vec{a}=(x_1,y_1) a =(x1,y1) b ⃗ = ( x 2 , y 2 ) \vec{b}=(x_2,y_2) b =(x2,y2),则有:

a ⃗ + b ⃗ = ( x 1 + x 2 , y 1 + y 2 ) \vec{a}+\vec{b}=(x_1+x_2,y_1+y_2) a +b =(x1+x2,y1+y2)

a ⃗ − b ⃗ = ( x 1 − x 2 , y 1 − y 2 ) \vec{a}-\vec{b}=(x_1-x_2,y_1-y_2) a b =(x1x2,y1y2)

λ a ⃗ = ( λ x 1 , λ x 2 ) \lambda\vec{a}=(\lambda x_1,\lambda x_2) λa =(λx1,λx2)

a ⃗ ⋅ b ⃗ = x 1 x 2 + y 1 y 2 \vec{a}\cdot\vec{b}=x_1x_2+y_1y_2 a b =x1x2+y1y2

关于平面向量

平面向量就介绍到这里,然而平面向量还有许多奇(du)妙(liu)的东西,也可以用来解决很多奇(du)妙(liu)的的问题……

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值