ChatTuGraph:通过大模型“与图对话”

使用SQL(Structured Query Language)对数据库/数据仓库进行查询分析操作,几乎成了研发工程师和数据分析师的“家常便饭”,然而要写出高效、清晰、优雅的SQL脚本并非易事。随着大语言模型(LLM)技术的普及,借助大模型微调(Fine Tuning)等技术将自然语言自动翻译为SQL语句(NL2SQL/Text2SQL)便成了非常流行的解决方案,相关的工具框架(Chat2DBDB-GPT等)也是层出不穷。

同样的,在图数据库领域也存在相似的问题,甚至更为严峻。相比于SQL相对成熟的语法标准(SQL2023),图查询语言尚未形成成熟的统一标准,目前是多种查询语法并存的状态(GQLPGQCypherGremlinGSQL等),上手门槛高,因此更需要借助大语言模型的自然语言理解能力,降低图数据库查询语言的使用门槛。

1. 图表融合:SQL+GQL

TuGraph计算引擎TuGraph Analytics创新性地设计了SQL+GQL融合语法,以解决图表混合分析场景的业务诉求,将图上的分析计算能力有机地融合到传统的SQL数据处理链路内,实现了图引擎上一体化的图数据建模图数据集成图存储图交互式分析能力。

TuGraph Analytics的SQL+GQL融合语法典型形式为 “SELECT-FROM-WITH-MATCH-RETURN” 结构,通过GQL语法的“MATCH-RETURN”语法单元,为SQL处理提供数据子视图,方便传统数据分析师对数据的进一步处理。

图表融合处理代码示例

通过以上的语法设计,可以满足多样化的图表融合处理的诉求。点边数据源提供构图数据,Request数据源提供图计算触发的起点集合。

图表融合处理典型链路

不同的数据源处理模式的组合,形成了多种“流”与“图”的混合计算形态。而SQL+GQL的融合语法设计,可以很好地表达多样化的计算模式。

多样化的图表混合处理模式

2. 与图对话:ChatTuGraph

我们不否认SQL+GQL融合语法是一个创见性的语言设计,但这并不能解决“新型图查询语言的高上手门槛”这个通病,因此,借助于LLM微调实现专有的图查询语言模型,通过自然语言的方式与图数据交互,实现“与图对话(Chat-to-Graph/Chat-TuGraph)”。

我们初步构想了面向未来的图数据库智能化能力,至少具备以下产品形态:

  1. 智能交互分析:通过Agent发送图查询指令,同步获取图数据结果。
  2. 智能数据变更:通过Agent发送图变更指令,修改图数据,获取修改状态(成功与否、影响行数等)。
  3. 智能任务处理:通过Agent发送图处理任务指令,触发异步图计算任务,获取图任务运行状态。
  4. 智能运维管控:通过Agent发送管控指令,实时获取图数据库状态(流量、负载、慢查询等),操纵图数据库实例(启停、伸缩、切流等)。

基于AI的图数据库访问

以上设想是一个比较长远的规划,仰望星空后,我们还是要脚踏实地,回归当下,从最基本的“智能交互探索”开始,构建Text2GQL能力。

3. 模型微调:Text2GQL

以下对话场景,便是我们希望第一阶段达成的目标。

Me: 查询蚂蚁集团研发的通过TuGraph支持的产品列表。

ChatTuGraph: match(a:company where a.name = ‘蚂蚁集团’)-[e:develop]->(b:product)<-[e2:support]-(c:software where c.name = ‘TuGraph’) return b.name

3.1 语料生成

众所周知,要实现模型微调,构建语料是第一步,也是最关键的一步,语料的质量和丰富度会直接决定微调模型的预测效果。但是前面提到,由于图查询语言标准的不够成熟,想要获取现有的GQL语料是一件很困难的事情。另外,SQL+GQL语法更是TuGraph的“独创”,业务语料的丰富度更低。这种情况下,我们只能“自力更生”想办法创造语料,于是就有了 “语法制导的语料生成策略”

该策略的具体思想如下:

  • GQL抽象语法树(AST)展开后的基本形式就是表达式(Expr),常量(Literal)也是一种特殊的表达式。
  • 通过设计表达式实例生成器,批量生成并组合出大量的AST实例,得到GQL语句样本。
  • 特定的AST可以通过通用生成器产生对应的提示词模板,提示词模板随着AST实例化形成提示词文本。
  • 特殊的不适合通过生成器生成的提示词模板可以通过人工构造。
  • 初步生成的提示词文本可以借助LLM(如GPT-4)进一步泛化和翻译,生成多样的自然语言提示词文本。

语法制导的语料生成

3.2 模型训练

构建完语料后,参考OpenAI官方模型微调手册,可以轻松实现模型微调(当然,氪金是必不可少的……)。

这里我们基于模型gpt-3.5-turbo-1106进行微调,首先需要将语料按照如下格式进行处理:

{
    "messages": [
        {
            "role": "system",
            "content": "你是TuGraph计算引擎的DSL专家"
        },
        {
            "role": "user",
            "content": "查找与person点有关联的公司节点,并按规格分组返回。"
        },
        {
            "role": "assistant",
            "content": "match(a:person)-[e:belong]-(b:company) return b.scale group by b.scale"
        }
    ]
}

进入OpenAI模型微调页面,上传格式化后的语料文件(一般以.jsonl结尾),设置模型前缀,创建微调任务。

创建OpenAI模型微调任务

模型微调完成后,可以看到最终的模型ID,形如:ft:gpt-3.5-turbo-1106:personal:<Suffix>:<Id>

查看OpenAI微调模型ID

验证微调模型也很简单,调用OpenAI的Chat Completion API时传递微调的模型ID即可。

from openai import OpenAI

client = OpenAI()

completion = client.chat.completions.create(
    model="ft:gpt-3.5-turbo-1106:personal:geaflow:8z·····a",
    temperature=0,
    messages=[
        {
            "role": "user",
            "content": "查询蚂蚁集团研发的通过TuGraph支持的产品列表。"
        }
    ]
)
print(completion.choices[0].message.content)

3.3 本地部署

如果不想“斥资”使用OpenAI的微调服务的话,我们也提供了开源的基于CodeLlama-7b-hf微调后的Text2GQL模型CodeLlama-7b-GQL-hf给大家测试使用(模型量化后可以在Mac上本地运行,没有4090的小伙伴也不用怕了v)。

首先,下载HuggingFace上的模型文件到本地(记得先安装git-lfs),如/home/huggingface。同时为了方便大家快速部署本地大模型服务,我们提供了预先安装好CUDA的Docker镜像。

$ git lfs install
$ git clone https://huggingface.co/tugraph/CodeLlama-7b-GQL-hf /home/huggingface
$ docker pull tugraph/llam_infer_service:0.0.1

启动Docker容器,将模型文件目录挂载到容器目录/opt/huggingface,并开放8000模型服务端口。

$ docker run -it --name text2gql-server \
  -v /home/huggingface:/opt/huggingface \
  -p 8000:8000 \
  -d llama_inference_server:0.0.1

进入Docker容器,对模型文件进行转换,最终会看到转换后的模型文件ggml-model-f16.gguf

$ docker exec -it text2gql-server /bin/bash
> python3 /opt/llama_cpp/convert.py /opt/huggingface
> ...
> Wrote /opt/huggingface/ggml-model-f16.gguf

默认转换后的模型精度为F16,模型大小为13.0GB。正常情况下Mac本地内存无法支撑如此大的模型推理,需要对模型做精度裁剪(当然如果你有4090/在带GPU卡的ECS上运行,可以跳过该步骤……)。

> # q4_0即将原始模型量化为int4,模型大小压缩至3.5GB
> /opt/llama_cpp/quantize /opt/huggingface/ggml-model-f16.gguf /opt/huggingface/ggml-model-q40.gguf q4_0

不同规格的量化参数对应的模型规模如下:

量化模型规模参考

最后,启动模型推理服务,绑定0.0.0.0:8000地址,否则容器外无法访问该服务。如果对模型做过量化,记得更新-m参数的值。

> /opt/llama_cpp/server --host 0.0.0.0 --port 8000 -m /opt/huggingface/ggml-model-f16.gguf -c 4096

服务启动完成后,可以对本地模型服务做简单的对话测试。

$ curl http://127.0.0.1:8000/completion \
  -H "Content-Type: application/json" \
  -d '{"prompt": "查询蚂蚁集团研发的通过TuGraph支持的产品列表。","n_predict": 128}'

4. 平台接入:Console+LLM

TuGraph Analytics的Console平台提供了初步的大模型能力的集成和对话能力,大家可以下载最新的代码部署体验。

登录Console后,切换到“系统模式”,进入 “系统管理-模型管理” 注册模型服务 模型类型可选择OPEN_AI或LOCAL,分别对应上述的OpenAI微调模型和本地部署模型。注册完成后,可以做简单的可用性测试。

大模型服务注册与测试

切换到“租户模式”,选择一个图查询任务,进入查询页面。点击“执行”按钮右侧的机器人图标,即可开启对话。对话回答的GQL语句可以点击复制按钮一键执行。

自然语言的图交互查询

5. 借图发声:Graph+AI

截至此时,借助于大模型微调技术,实现自然语言转图查询,仅仅是一个开端。未来我们相信“图与AI”还有更多的结合场景值得去探索和尝试。

  • 首先,当前的模型微调训练语料仍不够完备,真实测试中还是会出现推理幻觉和不准确的问题。进一步丰富训练语料以及在GQL标准不完善的情况下,构建模型的有效性验证方案是亟待解决的问题。
  • 其次,面向GQL查询分析场景的微调只解决了图上自然语言交互式分析的问题,对SQL+GQL融合语言中的数据变更、任务提交能力并未覆盖。当然这部分能力也需要TuGraph引擎能力不断迭代改进以获得支持,才能最大化地丰富自然语言操纵图数据库的场景。
  • 再次,面向图数据库的智能化运维管控也是一个很值得研究的方向。在以LLM为基础,Agent大行其道的环境下,借助AI能力释放基础软件的运维压力,也符合ESG的战略宗旨。
  • 另外,借助于图计算技术,为大模型推理提供更准确的知识库,消除模型幻觉,也是当下AI工程技术RAG研究的热门方向。
  • 最后,利用AIGC技术,为图应用场景生成更丰富的解决方案,提供高质量的内容输出,将技术红利带入到行业,对图计算技术的普及也大有裨益。

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

  • 14
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值