近日,观远数据G-park「Let's Date!BI!」系列直播第二期「2023,金融业如何应对“流浪数据”」顺利落幕。观远数据联合创始人兼首席数据科学家字节带来了《漫谈 ChatGPT 与问答式 BI》的探索思考。
字节一方面介绍了一系列 ChatGPT 等基于大语言模型的工具,如何提升日常工作、生活效率;另一方面,在 BI 和数据分析领域,对话式或者问答式的BI将给未来带来的无穷想象力。
漫谈 ChatGPT
在工作、生活角度带来的提升,这里分别以阅读、写代码、各种创作等角度展开。
搜索
ChatGPT 刚出世时,很多人说要颠覆 Google。因为原来要找一个知识,需要在 Google 或者百度进行关键词搜索。但搜索完之后,结果将是上万张网页,需要我们一页一页点击链接,查看信息。这其中,10 条链接或许只有 1 条和问题相关。当我们没找到相关信息时,还需要重新输入关键词再搜索。
而在 ChatGPT 中,对于提问可以直接解答。不过 ChatGPT 有两个缺陷,一是信息只到 2021 年,二是没有联网缺乏及时性的新信息。
New Bing 集成了 ChatGPT 的模型。当我们输入问题后,不仅会触发搜索,还会自动浏览网页文档,并总结相关信息,以结果直接反馈。以代码问题为例,正常搜索跳到 CSDN 等相关类型的开发网站,而 New Bing 将直接列出可运行的代码。这是非常方便且提效的。
延伸到企业内部的搜索,也是同理。企业内部信息管理系统,大部分搜索与 Google 类似,输入关键词,弹出文档链接,里面有标题和正文内容的匹配。这也需要一篇一篇自行寻找。此时通过 GPT 能力的结论直接反馈,将节省大量时间。
除了 New Bing,还有两个项目 perplexity.ai 和 you.com 可以直接访问,也提供了类似ChatGPT形式的问答。搜一个问题,会直接把答案回复出来,而且把相关引用链接都放在里面。这是很好的提效产品。
阅读
阅读方面介绍两个优秀产品 Bearly.ai 和 TLDR this。Bearly.ai 是一个浏览器的插件。当用户打开一篇长文章后,它会自动总结文章内容,提炼出关键结构,有效提升阅读效率。此外,该插件还有一个重要功能,可以在亚马逊等购物网站上,遍历商品的用户评论,并进行好评、差评的总结。
企业内部也常有类似需求,包括邮件、微信的沟通,甚至外部评论,通过收集信息并基于GPT模型的能力,进而快速知晓产品服务的好坏点。
搜索+阅读
除了搜索之外,Google 有