自从上一年出现的ChatGPT爆火之后,越来越多人开始期待能够训练一个自己的模型。但是由于OpenAI没有开源ChatGPT模型的代码,只能够调用其提供的API接口,因此想要训练自己的聊天机器人困难重重。
幸好,针对LLM的开源社区贡献了很多可以供我们自己训练的模型。比如Meta开源了对标GPT3模型的LLaMA模型,而斯坦福在其基础上,利用7B LLaMA模型和52K指令数据上进行微调,得到了Alpaca模型。并在评估中,其效果和ChatGPT模型类似。
但是Alpaca对于普通的用户而言,还是难以进行训练。因此又出现了Alpaca-Lora,让我们能够在消费级显卡中,几小时内就可以完成Alpaca的微调工作。
训练自己的模型
1.准备数据集
要训练自己的模型,首先要准备好数据集。这里面我们可以使用类似于instruct的方法,构造指令数据集结构:
比如我们可以直接使用开源的中文数据集:Chinese-alpaca-lora
https://github.com/LC1332/Chinese-alpaca-lora/blob/main/data/trans_chinese_alpaca_data.json
2.下载开源代码
我们可以直接使用Alpaca-LoRA 的代码
代码语言:javascript
复制
git clone https://github.com/tloen/alpaca-lora.git
把刚刚的数据集放到文件夹alpaca-lora目录下。
构造对应的python环境,同时安装依赖库:
代码语言:javascript
复制
conda create -n alpaca python=3.9
conda activate alpaca
cd alpaca-lora
pip install -r requirements.txt
保证pytorch版本可用,如果下面命令如果输出是True,则说明pytorch安装成功:
代码语言:javascript
复制
import torch
torch.cuda.is_available()
3.开启训练
在训练开启之前,我们需要先下载LLaMA基础模型,可以去到huggingface上进行下载:
https://huggingface.co/decapoda-research/llama-7b-hf/tree/main
由于国内有限制,只能一个一个把所有的文件进行下载,然后放到目录llama-7b-hf下:
开启训练模型,执行下面命令:
代码语言:javascript
复制
python finetune.py \
--base_model 'llama-7b-hf' \
--data_path './trans_chinese_alpaca_data.json' \
--output_dir './lora-alpaca-zh'
- base_model:在huggingface中下载的模型
- data_path:数据集
- output_dir:微调过后,模型的输出目录
模型训练后,就可以看到 lora-alpaca-zh 有模型生成了
云端模型部署
在这里,可以直接利用kaggle部署模型。
首先把对应的模型、数据集和代码放到kaggle notebook中:
可以像我上面的部署一样,或者可以直接复制我的kaggle代码:
同时需要设置GPU,打开网络:
保存代码后,点击 Open logs in Viewer,等待一定时间:
打开日志中生成的网页,就可以得到对话网页了:
比如可以让它找出下面文章的主旨:
当然,这个网页可以在手机上运行的,这样就可以随时随地的和它进行对话了。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓