前言
本报告全面介绍了人工智能大模型技术在财务领域的应用现状、典型案例、技术架构和发展趋势,旨在为财务专业人士和决策者提供深入的洞见和实践指导。报告涵盖了从基础概念、技术特征到行业应用的全方位内容,包括智能客服、智能审核、风险评估等多个财务场景,展示了大模型技术如何赋能财务管理,提升决策质量,优化资源配置,增强风险管理,提高运营效率,并强化合规性和透明度。此外,报告还探讨了大模型技术在财务应用中的局限性和关注问题,如准确性、成本、隐私安全等,并提出了相应的解决策略。
通过对人工智能大模型技术的深入分析,本报告为推动财务数字化转型和智能化升级提供了宝贵的参考和指导。
报告亮点
- 跨领域合作:由上海国家会计学院联合金蝶集团、元年科技等多家企业和研究机构共同撰写,体现了产学研用的深度融合。
- 全面覆盖:内容涵盖了人工智能大模型技术的基本概念、特征、发展历程、技术架构,以及在财务领域的应用框架和实现路径。
- 行业案例分析:提供了多个行业(如家电制造、银行、汽车、基础设施服务等)中人工智能大模型技术的具体应用案例,展示了技术的实际效果和潜力。
- 技术与业务融合:探讨了如何将人工智能大模型技术与财务业务深度融合,提升财务管理的智能化水平,包括智能客服、智能审核、风险评估等多个应用场景。
- 发展趋势:分析了人工智能大模型技术的发展趋势,包括模型架构演进、训练方法创新、应用场景拓展以及伦理和安全风险规避。
- 局限性和问题探讨:提出了人工智能大模型技术在财务领域应用的局限性和关注问题,如复杂计算的准确性、结果的不确定性、隐私及安全等,并探讨了可能的解决方案。
- 政策支持:结合了国家社会科学基金项目的支持,体现了国家层面对人工智能技术在会计和财务领域应用的重视。
- 前瞻性:书中不仅总结了当前的技术应用现状,还对未来的发展趋势和潜在影响进行了展望,为企事业单位财务部门及广大财务人员提供了启发和指导。
- 实践指导:提供了具体的技术实现路径和方法,包括数据处理、模型训练、模型部署、效果评估等,为实际应用提供了操作性指导。
- 综合性:集合了理论研究、技术发展、行业应用、案例分析、趋势预测等多个维度,为读者提供了一个全面的人工智能大模型技术在财务领域应用的知识体系。
附资料节选(文末下载完整PDF)
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓