大语言模型与深度学习书籍推荐(附教程)

前言

之前在朋友圈/推特上推荐的几本 NLP/LLM 的书大家都比较喜欢,这里统一整理了一下 (另外加上了一些深度学习基础知识学习的书籍),同时也发在公众号上方便大家收藏查阅。

大语言模型三剑客

Build a Large Language Model (From Scratch)

如果说本期所有的书只推荐一本的话,我会推荐这一本。这是真正教你从零开始构建 GPT 模型的书。全书以 GPT-2 模型为例,用 PyTorch 从头实现了 GPT-2 模型网络,对 Tokenizer,Embedding,Transformer 等部分都做了极为详细的介绍。同时载入 OpenAI 开源的 GPT-2 模型的权重以验证当前实现的正确性。

因为 GPT-2 模型很小,所以即使是 8G 的显卡也能跑得动 (没显卡用 CPU 跑也不会太慢),非常适合新手入门。书籍相关代码开源在 GitHub(4 万 Star), 也是很好的学习资料:rasbt/LLMs-from-scratch[1].我强烈建议大家跟着仓库内的指导一步一步跑一遍代码,这样会对 LLM 的原理有更深刻的理解。比如我自己在学习的时候就将代码进行了一些整理并封装成一个 Python 库,有兴趣的可以参考看下:ai-glimpse/toyllm[2].

Super Study Guide: Transformers & Large Language Models

如果你只想快速了解 LLM 相关的理论知识,那么这本书可能是目前最好的一本。本书虽然没什么代码供读者去实践,但是对 NLP/Transformer/LLM 的核心概念都给出了非常简明的介绍,可以让读者快速建立对 LLM 理论的认知。另外本书有大量的图表来帮助读者理解,对于理解 Transformer 的原理和 LLM 的训练过程非常有帮助。这本书远虽然没有上面 Build a Large Language Model (From Scratch) 有名,但是论内容,我认为这本是有过之而无不及的。

Natural Language Processing with Transformers

上面两本书都是直接面向 LLM 的书,也都是 2024 年的新书。如果你和我一样没什么 NLP 的基础,那么这本书可能更适合你作为入门的第一本书。本书从 NLP 的基础知识开始讲起,依托 Huggingface 的 transformer 库对 NLP&Transformer 模型做了非常详尽的介绍。书中提供了很多的代码用例,适合初学者夯实基础。

深度学习基础

上面的几本书是和 NLP/LLM 相关的,如果大家看着比较吃力,那么千万别沮丧,这很正常。可以先看看下面这几本深度学习基础的书。

Not knowing something doesn’t mean you’re dumb — it just means you don’t know it. —— Jamie Zawinski

Neural Networks and Deep Learning(NNDL)

Michael Nielsen 的 Neural Network and Deep Learning[3]至今仍然是我推荐入门学习深度学习的第一选择,本书高屋建瓴,有着对深度学习的真正理解。

You need to understand the durable, lasting insights underlying how neural networks work. Technologies come and technologies go, but insight is forever. —— Michael Nielsen

本书先是从理论上把基于梯度下降的优化过程讲清楚,之后写代码从零开始构建神经网络。条理清晰,层次分明,没有回避任何问题。

Neural Networks from Scratch in Python(NNFS)

如果说 Michael Nielsen 的 NNDL 是高屋建瓴,站在足够的高度为读者展示整个 NN 的蓝图,那么这本 NNFS[4] 就是踩在坚实的大地上,为读者提供蓝图中的每一处事物并带领你亲身去体验。其实 NNDL 本身也已经包含了很多 NNFS 提供的内容,但是后者更加具体一些。

优点: From Scratch 是透彻理解一个事物的最直接有效的办法,前提是真的 From Scratch; NN 的 Forward 部分讲的比较详细,逻辑清晰,代码简洁; 对 Nonlinear(Activation function) 的讲解细致,其中部分应该是参考了 Michael Nielsen, Neural Networks and Deep Learning 中Chap4 A visual proof that neural nets can compute any function 的内容。两者可以互为参考; Chap9 Backpropagation 写的极为细致清晰,应该是我目前看到的最为清晰的 BP 讲解与实现,层层递进,引人入胜;Chap10 Optimizers 算是差强人意,对各个优化器 motivation 的讲解较为清晰,代码写的也比较好。比较可惜的是没有放任何公式…这些公式又不难,贴上来对着代码讲一下会好很多;Chap18 Model Object,Chap21 Saving and Loading Models and Their Parameters 都写的不错,条理清晰,代码也是一步步地讲解

缺点: Chap6,7,8 中对 Calculus(Derivative, Gradient 等) 的讲解有些繁琐,且稍显粗浅;Chap11, 12, 13 分三章讲 Testing Data/Validation Data/Training Data, 每章几页草草了事,大可不必…不过能提到 data leakage 也算是弥补回来一点。

Dive into Deep Learning(D2L)

这本书我看的版本比较早,大概 2021 年前后读完此书,当时还是 0.7.1 版本,代码全是 MXNet 实现的。当时给这本书的评价是“非常全面的一本书,深入浅出,通俗易懂,值得多翻。”最近版本好像已经添加了 PyTorch 和 TensorFlow 的代码实现。不过也没有仔细对比内容就不做评价了。需要注意一点就是,本书是有中文版的,但是质量是真的差,建议还是看英文版。

Grokking Deep Learning

如果你的数学和我一样都不太好,而且上面的书看起来还是比较吃力,那么从这本书入手可能比较好。先说重点,建议只看前六章。本书前 6 章写的极其友好,很适合没有任何 DL 基础的人从零开始学起。印象比较深刻的就是把 NN 比作一个机器,NN 中各个参数比作一个个的旋钮,我们的任务其实就是不断调节各个旋钮的值使得机器按照我们预期的方式工作。这是一个非常恰当的例子,也几乎贯穿整本书的介绍。

本书的第 7, 8 章写的还算可以,中规中矩。但是从第 9 章开始这书开始错误频出,而且概念也描述得不清楚,不建议继续往下看。不论怎样,前 6 章值得一读。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值