第61章:PCL EigenValueFeature 特征值法描述子

一、EigenValueFeature 描述子概述

EigenValueFeature 是基于点云数据中每个点的局部几何特征,通过计算点云局部区域的协方差矩阵的特征值来描述点云的形状特征。协方差矩阵的特征值可以反映局部点云的形状信息,进而提取出一个可靠的特征描述子,用于点云分析、物体识别、特征匹配等任务。

EigenValueFeature 描述子利用点云数据的局部几何结构,即局部点集的分布形状,通过对点云的协方差矩阵进行特征值分解,得到每个点的描述子。由于特征值反映了局部区域的方向性和散布程度,因此这种描述子能够有效地捕捉到点云中的形状和结构特征,具有较强的鲁棒性和辨识能力。


二、EigenValueFeature 描述子的计算过程

  1. 局部邻域选择

    • 对于每个点,首先选择一个局部邻域。常用的邻域选择方法是 K近邻法半径搜索法,选择一个具有代表性的局部区域进行处理。

  2. 计算协方差矩阵

    • 对于选定的局部邻域,通过计算邻域内点的坐标差异来构建协方差矩阵。协方差矩阵是描述局部点云结构的一个重要工具,反映了点集的分布情况。

  3. <

以下是使用PCL进行二值化描述子匹配的示例代码: ```cpp #include <pcl/point_cloud.h> #include <pcl/point_types.h> #include <pcl/features/feature.h> #include <pcl/features/brief.h> #include <pcl/features/orb.h> #include <pcl/features/brisk.h> #include <pcl/registration/correspondence_estimation.h> #include <pcl/registration/correspondence_rejection.h> #include <pcl/registration/correspondence_rejection_one_to_one.h> #include <pcl/registration/correspondence_rejection_median_distance.h> int main() { // 定义两个点云 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud1 (new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud2 (new pcl::PointCloud<pcl::PointXYZ>); // 从文件中读取点云数据 pcl::io::loadPCDFile<pcl::PointXYZ> ("cloud1.pcd", *cloud1); pcl::io::loadPCDFile<pcl::PointXYZ> ("cloud2.pcd", *cloud2); // 定义二值化描述子计算对象 pcl::BriefEstimation<pcl::PointXYZ, pcl::Brief> brief; pcl::OrbEstimation<pcl::PointXYZ, pcl::Orb> orb; pcl::BriskEstimation<pcl::PointXYZ, pcl::BRISK> brisk; // 计算两个点云的特征点和二值化描述子 pcl::PointCloud<pcl::Brief>::Ptr descriptors1 (new pcl::PointCloud<pcl::Brief>); pcl::PointCloud<pcl::Brief>::Ptr descriptors2 (new pcl::PointCloud<pcl::Brief>); brief.setInputCloud (cloud1); brief.compute (*descriptors1); brief.setInputCloud (cloud2); brief.compute (*descriptors2); // 定义特征匹配对象 pcl::registration::CorrespondenceEstimation<pcl::Brief, pcl::Brief> est; est.setInputSource (descriptors1); est.setInputTarget (descriptors2); // 计算匹配对 pcl::CorrespondencesPtr correspondences (new pcl::Correspondences); est.determineCorrespondences (*correspondences); // 定义匹配对筛选器 pcl::registration::CorrespondenceRejectorOneToOne o2o; pcl::registration::CorrespondenceRejectorMedianDistance md; md.setInputCorrespondences (correspondences); md.getCorrespondences (*correspondences); o2o.setInputCorrespondences (correspondences); o2o.getCorrespondences (*correspondences); // 输出匹配结果 for (const auto& correspondence : *correspondences) std::cout << correspondence.index_query << " -> " << correspondence.index_match << std::endl; return 0; } ``` 在上面的代码中,我们使用了PCL中的BriefEstimation、OrbEstimation和BriskEstimation对象来计算二值化描述子,使用CorrespondenceEstimation对象计算匹配对,使用CorrespondenceRejectorOneToOne和CorrespondenceRejectorMedianDistance对象进行筛选。需要注意的是,这里的输入点云类型是PointXYZ,如果需要使用其他类型的点云,需要对BriefEstimation、OrbEstimation和BriskEstimation对象进行相应的修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

《雨声》

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值