本文是Dify访问大语言模型(云端与本地)的零基础操作指南,是我找了一台Win11家庭版的电脑,从头到尾配置的全过程,希望能帮助无软件开发经验的用户快速实现大模型调用。
一、Dify 调用大模型的两种核心方式
大语言模型按部署方式分为云端API模型和本地私有化模型。Dify对两者均提供可视化配置支持,无需代码即可完成接入。
1. 云端模型(API调用)
特点:依赖第三方服务商算力,数据需传输至服务商服务器,适合快速验证和轻量级应用。
支持服务商:DeepSeek、智谱 AI、文心一言、通义千问等。
2. 本地模型(私有化部署)
特点:数据完全本地处理,需自行部署模型服务(如 Ollama),适合高隐私场景。
常用工具:Ollama、LocalAI,支持 Llama3、DeepSeek-R1 等开源模型。
3、两种模型对比
维度 | 云端模型 | 本地模型 |
成本 | 按Token计费(如 0.02 元/千 Token) | 无持续费用,需承担硬件成本(GPU/内存) |
部署难度 | 需安装OpenAI-API-compatible服务完成API配置 | 需安装Ollama并调试网络 |
数据安全 | 依赖服务商隐私协议 | 数据完全本地化,符合金融/医疗合规要求 |
适用场景 | 快速验证、低并发需求 | 高频调用、高隐私要求的长期应用 |
4、两种模型引擎服务对比
维度 | OpenAI-API-compatible(如硅基流动、OpenAI云服务) | Ollama |
部署方式 | 云端服务,依赖第三方服务器 | 本地部署,数据完全私有化 |
核心目标 | 提供标准化 API 接口,快速集成大模型能力 | 简化本地大模型的部署与管理,支持私有化定制 |
模型选择 | 固定服务商提供的模型(如 GPT-4o、DeepSeek云版本) | 支持Llama3、DeepSeek-R1、Mistral等开源模型自由切换 |
数据流向 | 用户数据需传输至服务商云端服务器 | 数据仅在本地设备处理,不外传 |
二、云端模型接入步骤(以 DeepSeek 为例)
1. 注册并获取 API 密钥
访问DeepSeek官网(https://platform.deepseek.com/) → 完成注册 → 进入控制台生成API Key。
2. 在Dify中配置模型(基于OpenAI-API-compatible服务)
(1)部署Dify请参考《开启智能体和知识库探索之旅:Dify私有化部署》,没有开发经验的朋友按照步骤也可轻松完成部署。
(2)安装OpenAI-API-compatible服务
-
登录Dify控制台 → 设置 → 模型供应商 → 搜索框中输入“OpenAI-API-compatible”,找到后单击“安装”
-
安装完后会出现在模型列表中,如下图所示:
(3)在OpenAI-API-compatible插件服务中添加模型
-
登录Dify控制台 → 设置 → 模型供应商 → 选择OpenAI-API-compatible → 单击添加模型按钮。
-
打开添加模型界面后填写参数
模型名称:自定义(如 DeepSeek-R1-7B)
API Key:复制粘贴上面创建的密钥
API Endpoint:https://openapi.coreshub.cn/v1。
-
点保存后显示出1个模型
三、本地模型接入方法(基于Ollama)
Ollama虽是一个本地部署的大模型管理平台,支持在本地运行各种开源模型,但是也兼容OpenAI的API接口。
1、部署Dify请参考《开启智能体和知识库探索之旅:Dify私有化部署》,没有开发经验的朋友按照步骤也可轻松完成部署。
2、Windows系统中安装Ollama
(1)打开Ollama官网(https://ollama.com/download)下载安装文件,我的电脑是windows11,我选择的是windows安装包,如下图所示,注意我的网络可能有点慢,我下载了2个小时,占用1G左右的硬盘空间。
(2)这里不推荐鼠标双击安装包安装,因为这种安装方式默认安装到C盘且不能自定义安装目录,安装完后大约占用5G硬盘空间如下图所示;这里个人推荐命令安装方式,我下面会详细介绍这种方式的安装步骤,没有开发经验的也不用担心,按照下面步骤操作轻松完成安装。
(3)按Win+R打开运行窗口,输入“cmd”后回车启动cmd,并定位到OllamaSetup.exe所下载的目录,如下图所示:
注意:“cd E:\download”跳转不过去,必须输入“cd /d E:\download”才能跳转到下载目录
(4)执行"OllamaSetup.exe /DIR="D:\Video\Ollama"命令,DIR的值为"D:\Video\Ollama",该值为Ollama的安装目录
(5)验证Ollama是否安装成功
-
重新打开一个CMD输入“ollama -v”回车,如果显示如下图所示内容,表示Ollama安装成功了。
-
打开浏览器地址栏输入“http://localhost:11434”后回车,如果显示如下图所示内容,表示Ollama安装成功了。
(6)成功安装后,Ollama默认是打开状态,此时我们先退出Ollama,如下图所示:
(7)成功安装完后,桌面上没有Ollama启动图标,在开始菜单中输入Ollama搜索查找,打开文件所在位置,选中并单击鼠标右键,显示更多选项/发送到/桌面快捷方式
3、配置Ollama环境变量
(1)打开配置环境变量界面
(2)新建环境变量“OLLAMA_MODELS”,将其设置为存放模型的地址(Ollama安装的根目录下新建一个Models文件夹),以节约C盘空间。
(3)新建环境变量“OLLAMA_HOST”,“0.0.0.0:11434”,让除本机以外的其他局域网机器也可以访问模型。
(4)新建环境变量需重启Ollama服务才能生效开始,桌面双击下图所示图标打开Ollama,服务启动时加载新建环境变量使其生效。
4、下载大模型
(1)打开Ollama官网(https://ollama.com/),单击Models连接
(2)搜索deepseek,我这里选择了7b
(3)复制下拉框后面的执行命令,ollama run deepseek-r1:7b
(4)在CMD中执行上面复制的命令下载ds大模型
上面我们修改了大模型的默认存储位置,下载需要打开CMD窗口,下载大家耐心等待一下,后面下载速度会越来越慢,我下载了五十分钟左右。
(5)如果出现下图所示的效果,表示下载完成
(6)验证DeepSeek,在DeepSeek下载完成后,在CMD中输入:Hello deepseek,如下图所示:
How can I assist you today?今天我能如何帮助您?今天有什么可以帮您?
5、在Dify中配置模型(基于Ollama服务)
(1)Dify中安装Ollama服务插件
-
登录Dify控制台 → 设置 → 模型供应商 → 搜索框中输入“Ollama”,找到后单击“安装”
-
安装完后会出现在模型列表中,如下图所示:
(2)在Ollama插件服务中添加模型
-
登录Dify控制台 → 设置 → 模型供应商 → 选择Ollama → 单击添加模型按钮。
-
打开添加模型界面后填写参数
模型名称:自定义(如 DeepSeek-R1-Distill-Qwen-7B)
-
基础 URL:
本地部署(http://localhost:11434)/(http://127.0.0.1:11434)
Docker部署(http://host.docker.internal:11434)
云端部署(http://203.0.113.10:11434)。
-
点保存后显示出1个模型
-
点保存后,下图是大部分人会遇到的问题,原因是因为:容器与主机网络隔离问题,即使在本地也无法访问,请根据以下操作步骤配置网络。
-
Ollama模型命名规范,名称需严格遵循 <model-name>:<tag> 格式(如 deepseek-r1:14b),Dify配置需完全匹配,如果确实不会写可以按Win+R打开运行窗口,输入“cmd”后回车启动cmd,执行“ollama list”查看Ollama已安装的模型的完整名称。
-
网络配置,Docker默认有自己的网络命名空间,
127.0.0.1
或localhost
指的是容器内部,而不是宿主机,Ollama默认监听127.0.0.1,使用“
http://host.docker.internal:11434”实现容器访问宿主机服务。 -
添加模型填写参数如下图所示:
-
如下图所示,表示ollama配置ds大模型成功
总结:通过上述方法,即使无开发经验也能轻松在Dify中灵活调用各类大模型,Dify+Ollama部署比较简单,对硬件要求也不高,主要是Docker的安装(换国内镜像)和局域网设置可能会遇到问题。部署完个人推荐应用路径:先试云端(用DeepSeek或智谱AI的免费额度快速验证应用逻辑)再转本地(数据量增大或隐私需求提升时,通过 Ollama 部署开源模型)。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓