前言
在之前的,已经介绍了ollama在Windows环境下和Linux环境下的安装,在本篇中将重点介绍Ollama的常用配置
修改模型存储地址
默认情况下,ollama在Linux系统中会将模型下载到/root/.ollama
文件 夹中,windows系统会将模型下载到C:\Users\用户名\.ollama\models
文件夹中,这种情况下模型占用的是系统盘的空间,所以最好换个路径保存。
(一)Linux环境修改模型存储地址 ```code-snippet__js vi ~/.bashrc ````然后添加`
export OLLAMA_MODELS=你想设置的路径
使环境变量生效
source ~/.bashrc
如果之前下载过模型,记得要把源地址的模型移动到新的路径下,如果不生效尝试重启一下ollama
sudo systemctl daemon-reload
sudo systemctl restart ollama
检查服务状态:
sudo systemctl status ollama
当无法直接通过 systemctl 重启时,可手动停止并重新启动。
查找占用端口的进程:
lsof -i :11434
终止相关进程:
kill -9 <PID>
重新启动服务:
ollama serve
(二)Windows修改模型存储地址
然后点击环境变量
这里选任意一个就行
变量名为OLLAMA_MODELS 修改完保存即可
Service服务
如果需要局域网根据IP地址远程访问,需要修改ollama.service文件中的配置
systemctl edit ollama.service # 两个命令选一个就行,效果一致
sudo vi /etc/systemd/system/ollama.service # 两个命令选一个就行,效果一致
在 [Service] 部分添加环境变量:
Environment = "OLLAMA_HOST=0.0.0.0"
Environment = "OLLAMA_ORIGINS=*"
如果要修改端口,同样的是修改OLLAMA_HOST参数,参数修改形式如下(端口11434是ollama的默认端口,需要修改端口时只需更改这一参数即可)
Environment = "OLLAMA_HOST=0.0.0.0:11434"
保存后重新加载配置并重启:
sudo systemctl daemon-reload
sudo systemctl restart ollama
验证服务状态
netstat -tulpn | grep 11434
多卡均衡 ```code-snippet__js
Environment=“CUDA_VISIBLE_DEVICES=0,1,2,3” # 这里根据你自己实际的 GPU标号来进行修改
Environment=“OLLAMA_SCHED_SPREAD=1” # 这个参数是做负载均衡
````其中CUDA_VISIBLE_DEVICES填写的是GPU的编号,可以通过nvidia-smi 查看相关的编号
OLLAMA_SCHED_SPREAD`的作用是使得模型可以均匀的在多张显卡上运行,如果不加这个配置,模型会优先选择一个性能最佳的显卡,只有显存不足时才会占用其他显卡,为了保证运行的效率,建议将这个参数设置为1
保存退出后,重新加载systemd并重新启动Ollama服务使其配置生效
systemctl daemon-reload
systemctl restart ollama
其他参数
参数名 | 参数说明 |
---|---|
OLLAMA_NUM_PARALLEL | 设置Ollama每个模型最大并行请求数,默认依可用显存自动选4或1 |
OLLAMA_MAX_QUEUE | 内存不足时新模型请求排队,按序处理,先前的模型闲置会卸载以腾空间 |
OLLAMA_MAX_LOADED_MODELS | 设置最大加载模型数量,默认3*GPU数量,超量新请求会被拒 |
想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料
已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享
!
👇👇扫码免费领取全部内容👇👇
一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势
想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI
:
1. 100+本大模型方向电子书
2. 26 份行业研究报告:覆盖多领域实践与趋势
报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:
- 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
- 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
- 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
- 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。
3. 600+套技术大会 PPT:听行业大咖讲实战
PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:
- 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
- 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
- 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
- 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。
二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走
想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!
1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位
面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析
:
2. 102 道 AI 大模型真题:直击大模型核心考点
针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:
3. 97 道 LLMs 真题:聚焦大型语言模型高频问题
专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:

三、路线必明: AI 大模型学习路线图,1 张图理清核心内容
刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图
」直接帮你划重点,不用再盲目摸索!
路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
L5阶段:专题集丨特训篇 【录播课】

四、资料领取:全套内容免费抱走,学 AI 不用再找第二份
不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:
👇👇扫码免费领取全部内容👇👇
2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!