L1:一维圣维南方程

本文介绍了纳维-斯托克斯方程的一维简化形式,即一维圣维南方程,以及在水文学中常见的动力波、运动波和扩散波简化模型。讨论了在忽略粘性力、假设压力近似静态水压等条件下,如何推导出一维动力方程,并解释了不同简化模型适用的情况。同时,提到了重力、摩擦力在水流动力学中的作用以及流体动力学在实际水道水流计算中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Navier–Stokes equations

u,v,z分别表示x/y/z(笛卡尔坐标,Cartesian coordinates)方向的速度,p为压力,ρ为水的密度,v为运动粘度( kinematic viscosity),fx为x方向的力。

Navier–Stokes的简化:

一维简化:一维圣维南方程,one-dimensional(1-D) Saint-Venant equations

二维简化:二维圣维南方程,浅水方程,two-dimensional(2-D) Saint-Venant equations

2.一维简化的假设

(1)忽略粘性力,按fx中的摩擦力考虑(大概是这个意思,不是很准确)

(2)忽略y、z方向的速度,天然水体的长度相比宽、深要大很多

(3)假设压力分布近似于静水压

微分形式:

代入Navier–Stokes压力项,h为水深:

(4)流体受到重力(gravity)、摩擦力(friction)作用

(5)重力在x方向上的力,M为质量,θ为角度:

当θ很小时(适用于一般情况),S为河底坡度(比降)

假设fx表示单位质量的力,则:

(6)沿程水头损失(个人理解)

(7)上述假设代入Navier–Stokes方程,得到1-D Saint Vanent(动力方程):

\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+g\frac{\partial h}{\partial x}+g(S_{f}-S_{0})=0

 (a) 局部加速度项, (b) 对流加速度项, (c) 压力梯度项, (d) 重力项, (e) 摩阻项,(a)+(b)称为惯性项。(Sf与S0的符号不确定)

(8)连续方程

\frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=0

A为过水断面面积,m2,Q为过水断面流量,m3/s,x为沿河道的距离,m。

3.常见简化

(1)Dynamic wave 动力波

即完整的1-D Saint Vanent,各项均不可忽略,对于受潮汐、闸、坝影响大的河段。

(2)Kinematic wave 运动波

(S_{f}-S_{0})=0

忽略(a)、(b)、(c)三项。

(3)Diffusive wave 扩散波

g\frac{\partial h}{\partial x}+g(S_{f}-S_{0})=0

 忽略(a)、(b)两项,对于一般天然河道水流,惯性项较其他项要小两个数量级,通常忽略。流量演算的水文法都忽略惯性项。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值