L1:一维圣维南方程

1.Navier–Stokes equations

u,v,z分别表示x/y/z(笛卡尔坐标,Cartesian coordinates)方向的速度,p为压力,ρ为水的密度,v为运动粘度( kinematic viscosity),fx为x方向的力。

Navier–Stokes的简化:

一维简化:一维圣维南方程,one-dimensional(1-D) Saint-Venant equations

二维简化:二维圣维南方程,浅水方程,two-dimensional(2-D) Saint-Venant equations

2.一维简化的假设

(1)忽略粘性力,按fx中的摩擦力考虑(大概是这个意思,不是很准确)

(2)忽略y、z方向的速度,天然水体的长度相比宽、深要大很多

(3)假设压力分布近似于静水压

微分形式:

代入Navier–Stokes压力项,h为水深:

(4)流体受到重力(gravity)、摩擦力(friction)作用

(5)重力在x方向上的力,M为质量,θ为角度:

当θ很小时(适用于一般情况),S为河底坡度(比降)

假设fx表示单位质量的力,则:

(6)沿程水头损失(个人理解)

(7)上述假设代入Navier–Stokes方程,得到1-D Saint Vanent(动力方程):

\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+g\frac{\partial h}{\partial x}+g(S_{f}-S_{0})=0

 (a) 局部加速度项, (b) 对流加速度项, (c) 压力梯度项, (d) 重力项, (e) 摩阻项,(a)+(b)称为惯性项。(Sf与S0的符号不确定)

(8)连续方程

\frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=0

A为过水断面面积,m2,Q为过水断面流量,m3/s,x为沿河道的距离,m。

3.常见简化

(1)Dynamic wave 动力波

即完整的1-D Saint Vanent,各项均不可忽略,对于受潮汐、闸、坝影响大的河段。

(2)Kinematic wave 运动波

(S_{f}-S_{0})=0

忽略(a)、(b)、(c)三项。

(3)Diffusive wave 扩散波

g\frac{\partial h}{\partial x}+g(S_{f}-S_{0})=0

 忽略(a)、(b)两项,对于一般天然河道水流,惯性项较其他项要小两个数量级,通常忽略。流量演算的水文法都忽略惯性项。

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 方程是一类常微分方程,可以用于描述广义相对论中的引力场。方程的一维形式如下: c(d^2φ/dr^2) + (2/r)(dφ/dr) = 4πGρ 其中,c是光速,r是距离,φ是引力势函数,ρ是质量密度,G是引力常数。 要求解这个方程,首先需要对方程进行整理。我们可以将方程变形为: (d^2φ/dr^2) + (2rc)/(c^2)(dφ/dr) = (4πGρ)/(c^2) 然后,我们可以将引力势函数φ表示成关于距离r的幂级数的形式,即: φ(r) = φ₀ + φ₁r + φ₂r^2 + ... 将这个形式的φ代入方程,我们可以得到一系列关系式,通过这些关系式我们可以逐项求解φ的系数φ₀、φ₁、φ₂等。 通过求解这些系数,我们就可以找到方程的解。这样,我们就得到了方程的解函数。 需要注意的是,由于方程的复杂性,可能无法找到通解,通常需要针对具体问题提出相应的边界条件或初值条件,来求解特定的问题。不同的边界条件或初值条件可能会得到不同的解。因此,在实际应用中,需要根据具体问题来确定边界条件或初值条件,并进一步求解方程。 ### 回答2: 一维方程是一个非线性偏微分方程,一般形式为: u_t + c u_x + u u_x = 0 其中 u_t 和 u_x 表示 u 关于时间 t 和空间 x 的偏导数,c 是一个常数。 为了求解这个方程,我们可以使用特征线法。 假设方程的解为 u(x, t),我们引入一个参数 s,将 u 的变量 x 和 t 表示为一个新的变量 ξ 和 τ 的函数: x = ξ - cτ t = τ 我们可以根据链式法则求出 u 关于 ξ 和 τ 的偏导数: u_x = u_ξ - c u_τ u_t = u_τ 将上述结果代入一维方程,得到: u_τ - c u_ξ + u u_ξ - c u u_τ = 0 对上式进行整理,得到: (u - c) u_ξ + (1 - cu)u_τ = 0 上式左侧的两个系数分别为 (u - c) 和 (1 - cu),我们可以使用特征线法来解决。 令两个系数等于常数 k,得到方程组: (u - c) = k (1 - cu) = k 解上述方程组,得到: u = c + k τ = t ξ = x - (c + k)t 因此,一维方程的解为: u(x, t) = c + k 其中 k 是一个常数,需要根据初始条件来确定。 综上所述,一维方程的解为 u(x, t) = c + k,其中 k 是一个常数,需要根据初始条件来确定。 ### 回答3: 一维方程是一个偏微分方程,通常用来描述声波在介质中传播的行为。它的数学表达式为: ∂u/∂t = c^2 ∂^2u/∂x^2 其中,u是声波在时刻t、位置x处的位移,c是声速。 要求解一维方程,可以使用分离变量法。假设u(x,t)可以表示为两个单变量函数X(x)和T(t)的乘积,即u(x,t) = X(x) * T(t)。 将上述假设带入一维方程: X(x) * dT/dt = c^2 * d^2X/dx^2 * T(t) 将等式两边同时除以c^2 * X(x) * T(t): 1/c^2 * dT/dt = 1 / X(x) * d^2X/dx^2 由于等式两边的函数只依赖于不同的自变量,所以它们必须相等于常数,记为λ。可以得到两个常微分方程: dT/dt + λ c^2 T(t) = 0 d^2X/dx^2 + λ X(x) = 0 解这两个常微分方程,可以得到X(x)和T(t)的解。 对于dT/dt + λ c^2 T(t) = 0,它的解为T(t) = A * exp(-λ c^2 t),其中A是一个常数。 对于d^2X/dx^2 + λ X(x) = 0,它的解取决于常数λ的取值。根据λ的不同符号可以分为三种情况:λ>0,λ=0和λ<0。 当λ>0时,常微分方程的解为X(x) = B * sin(√(λ) * x) + C * cos(√(λ) * x),其中B和C是常数。 当λ=0时,常微分方程的解为X(x) = F * x + G,其中F和G是常数。 当λ<0时,常微分方程的解为X(x) = D * exp(√(-λ) * x) + E * exp(-√(-λ) * x),其中D和E是常数。 将X(x)和T(t)的解带回原假设,即u(x,t) = X(x) * T(t),可以得到一维方程的解。 这是一维方程求解的基本思路,具体解法可根据实际问题和边界条件的不同进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值