有限体积法(1)——一维扩散方程的推导

对于变量 ϕ \phi ϕ输运方程为:

∂ ( ρ ϕ ) ∂ t + ∇ ⋅ ( ρ ϕ u ) = ∇ ⋅ ( Γ ∇ ϕ ) + S ϕ (1) \frac{\partial ( \rho \phi)}{\partial t} + \nabla \cdot (\rho \phi \bold u) = \nabla \cdot (\Gamma \nabla \phi) + S_\phi \tag{1} t(ρϕ)+(ρϕu)=(Γ∇ϕ)+Sϕ(1)

其中, Γ \Gamma Γ为扩散系数。
方程 ( 1 ) (1) (1)从左到右的各项分别是时间项、对流项、扩散项和源项。将方程 ( 1 ) (1) (1)中略去时间项和对流项就是稳态扩散方程
∇ ⋅ ( Γ ∇ ϕ ) + S ϕ = 0 (2) \nabla \cdot (\Gamma \nabla \phi) + S_\phi = 0 \tag{2} (Γ∇ϕ)+Sϕ=0(2)

对方程 ( 2 ) (2) (2)在有限控制体内积分,并根据高斯散度定理有,
∫ C V ∇ ⋅ ( Γ ∇ ϕ ) d V + ∫ C V S ϕ d V = ∫ A ~ n ⋅ ( Γ ∇ ϕ ) d A + ∫ C V S ϕ d V = 0 (3) \begin{aligned} &\int_{CV} \nabla \cdot (\Gamma \nabla \phi) dV + \int_{CV} S_\phi dV \\ \\ &= \int_{\tilde A} \bold n \cdot (\Gamma \nabla \phi) dA + \int_{CV} S_\phi dV = 0 \end{aligned} \tag{3} CV(Γ∇ϕ)dV+CVSϕdV=A~n(Γ∇ϕ)dA+CVSϕdV=0(3)

其中, n \bold n n为边界面 A ~ \tilde A A~的法向量。
考虑一维模型,扩散方程为
d d x ( Γ d ϕ d x ) + S = 0 (4) \frac{d}{dx}\left( \Gamma \frac{d\phi}{dx} \right) + S = 0 \tag{4} dxd(Γdxdϕ)+S=0(4)

要离散方程 ( 4 ) (4) (4)首先要生成网格,如下图,将一维计算域分成5段(即5个网格单元),每个网格单元就是一个有限控制体。两端边界为A和B,每个网格单元有一个节点,如W、P和E,节点一般为网格单元的中心点,也是变量保存的位置。两个相邻节点的中点是网格单元的边界。
网格划分
网格与边界之间的距离关系如下图,
在这里插入图片描述
扩散方程的离散主要包括两个部分:散度的离散和梯度的离散。

散度的离散

根据方程式 ( 3 ) (3) (3),一维扩散方程 ( 4 ) (4) (4)在控制体单元 Δ V \Delta V ΔV(边界为 A ~ \tilde A A~)上的积分有,
∫ Δ V d d x ( Γ d ϕ d x ) d V + ∫ Δ V S d V = ∫ A ~ n ⋅ ( Γ d ϕ d x i ) d A + ∫ Δ V S d V = ( Γ A d ϕ d x ) e − ( Γ A d ϕ d x ) w + S ˉ Δ V = 0 (5) \begin{aligned} &\int_{\Delta V} \frac{d}{dx} \left( \Gamma \frac{d \phi}{dx} \right)dV + \int_{\Delta V} SdV \\ \\ &= \int_{\tilde A} \bold n \cdot \left( \Gamma \frac{d \phi}{dx} \bold i \right) dA + \int_{\Delta V}SdV \\ \\ &= \left( \Gamma A \frac{d \phi}{dx} \right)_e - \left( \Gamma A \frac{d \phi}{dx} \right)_w + \bar{S} \Delta V = 0 \end{aligned} \tag{5} ΔVdxd(Γdxdϕ)dV+ΔVSdV=A~n(Γdxdϕi)dA+ΔVSdV=(ΓAdxdϕ)e(ΓAdxdϕ)w+SˉΔV=0(5)

其中, A A A是边界面的面积, S ˉ \bar{S} Sˉ为控制体单元内的平均值。从上图中可见,在边界 w w w处,边界的法向量 n \bold n n是指向x轴负向的,所以 n ⋅ i = − 1 \bold n \cdot \bold i = -1 ni=1

梯度的离散

方程式 ( 5 ) (5) (5)仅是半离散方程,需要进一步对梯度项 d ϕ d x \frac{d \phi}{dx} dxdϕ进行离散。从式中看见,梯度项都是位于单元边界面位置的,而边界处是不保存变量值,边界面两边的节点会保存变量值,因此可以用有限差分法求解边界面的导数,比如用二阶中心差分格式,
( Γ d ϕ d x ) w = Γ w ϕ P − ϕ W δ x W P (6a) \left( \Gamma \frac{d \phi}{dx} \right)_w = \Gamma_w \frac{\phi_P - \phi_W}{\delta x_{WP}} \tag{6a} (Γdxdϕ)w=ΓwδxWPϕPϕW(6a)

( Γ d ϕ d x ) e = Γ e ϕ E − ϕ P δ x P E (6b) \left( \Gamma \frac{d \phi}{dx} \right)_e = \Gamma_e \frac{\phi_E - \phi_P}{\delta x_{PE}} \tag{6b} (Γdxdϕ)e=ΓeδxPEϕEϕP(6b)

源项 S ˉ Δ V \bar S \Delta V SˉΔV通常是变量 ϕ P \phi_P ϕP的函数,这里假设为线性关系,即
S ˉ Δ V = S u + S P ϕ P (7) \bar S \Delta V = S_u + S_P \phi_P \tag{7} SˉΔV=Su+SPϕP(7)

将式 ( 6 a ) (6a) (6a) ( 6 b ) (6b) (6b) ( 7 ) (7) (7)带入到式 ( 5 ) (5) (5)中,
Γ e A e ϕ E − ϕ P δ x P E − Γ w A w ϕ P − ϕ W δ x W P + ( S u + S P ϕ P ) = 0 (8) \Gamma_e A_e \frac{\phi_E - \phi_P}{\delta x_{PE}} - \Gamma_w A_w \frac{\phi_P - \phi_W}{\delta x_{WP}} + (S_u + S_P \phi_P) = 0 \tag{8} ΓeAeδxPEϕEϕPΓwAwδxWPϕPϕW+(Su+SPϕP)=0(8)
重新整理方程式 ( 8 ) (8) (8)得,
( Γ e δ x P E + Γ w δ x W P − S P ) ϕ P = ( Γ w δ x W P ) ϕ W + ( Γ e δ x P E ) ϕ E + S u (9) \left( \frac{\Gamma_e}{\delta x_{PE}} + \frac{\Gamma_w}{\delta x_{WP}} - S_P\right) \phi_P = \left( \frac{\Gamma_w}{\delta x_{WP}} \right) \phi_W + \left( \frac{\Gamma_e}{\delta x_{PE}} \right) \phi_E + S_u \tag{9} (δxPEΓe+δxWPΓwSP)ϕP=(δxWPΓw)ϕW+(δxPEΓe)ϕE+Su(9)
简化一下,
a P ϕ P = a W ϕ W + a E ϕ E + S u (10) a_P \phi_P = a_W \phi_W + a_E \phi_E + S_u \tag{10} aPϕP=aWϕW+aEϕE+Su(10)
其中各系数为
{ a W = Γ w δ x W P a E = Γ e δ x P E a P = a W + a E − S P (11) \begin{cases} a_W &= \frac{\Gamma_w}{\delta x_{WP}} \\ \\ a_E &= \frac{\Gamma_e}{\delta x_{PE}} \\ \\ a_P &= a_W + a_E - S_P \end{cases}\tag{11} aWaEaP=δxWPΓw=δxPEΓe=aW+aESP(11)

方程式 ( 5 ) (5) (5)中的扩散系数 Γ \Gamma Γ有两种方法来计算:算术平均法(相当于线性插值)和调和平均法(详见文献[2])。这里先采用简单的线性插值来表示,即
Γ w = Γ W + Γ P 2 (12a) \Gamma_w = \frac{\Gamma_W + \Gamma_P}{2} \tag{12a} Γw=2ΓW+ΓP(12a)

Γ e = Γ P + Γ E 2 (12b) \Gamma_e = \frac{\Gamma_P + \Gamma_E}{2} \tag{12b} Γe=2ΓP+ΓE(12b)

参考资料:
  1. Versteeg H K , Malalasekera W . An introduction to computational fluid dynamics : the finite volume method = 计算流体动力学导论[M]. 世界图书出版公司, 2010.
  2. 陶文铨. 数值传热学-第2版[M]. 西安交通大学出版社, 2001.
  • 16
    点赞
  • 59
    收藏
    觉得还不错? 一键收藏
  • 12
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值