L2:Abbott隐式格式有限差分法解一维明渠非恒定流

回顾

连续方程:

\frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=0

动量方程:

\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+g\frac{\partial h}{\partial x}+g(S_{f}-S_{0})=0

1.定义用于连续方程的蓄存宽度B_{s}和用于运动方程的计算宽度B(B不太理解)

A = B_{s}*h

改写方程组(不理解为什么S_{0}被省略了)

B_{s}\frac{\partial h}{\partial t}+\frac{\partial Q}{\partial x}=0

\frac{\partial Q}{\partial t}+\frac{\partial }{\partial x}\left ( \frac{\alpha Q^{2} }{A}\right )+gA\frac{\partial h}{\partial x}+\frac{gQ\left | Q \right |}{C^{2}AR_{h}}=0

其中\alpha =\frac{A}{Q^{2}}\int_{A}^{}u^{2}dA,C为谢才(chezy)系数,Rh为水力半径。

复习曼宁公式、谢才公式

管渠沿程水头损失常用谢才公式计算

h_{l}=\frac{v^{2}}{C^{2}R}l

R为过水断面水力半径,C为谢才系数,l为管渠长度

曼宁引入粗糙系数n,计算谢才系数C,适用于明渠、非满管流或较粗糙的管道水力计算。

C=\frac{1}{n}R^{\frac{1}{6}}

代入谢才公式

h_{l}=\frac{n^{2}v^{2}}{R^{\frac{4}{3}}}l

2.链式法则

\frac{\partial }{\partial x}\left ( \frac{\alpha Q^{2} }{A}\right )=\frac{2\alpha Q}{A}\frac{\partial Q}{\partial x}-\frac{\alpha Q^{2}}{A}\frac{\partial A}{\partial x}+\frac{Q^{2}}{A}\frac{\partial \alpha }{\partial h}\frac{\partial h}{\partial x}

其中\frac{\partial Q}{\partial x}=-B_{s}\frac{\partial h}{\partial t}

引入计算宽度B,令A=Bh

\frac{\partial A}{\partial x}=B\frac{\partial h}{\partial x}+h\frac{dB}{dh}\frac{\partial h}{\partial x}

代入运功方程就写成

3.离散方式

在每个节点按顺序交错算出Q或h

连续方程

连续方程的差分形式(D_{i}应写作D_{1})

 

运动方程

 运动方程的差分形式

以上D1、D2、D3、D4都取t=(n+1/2)Δt的值

 4.简化方程组,写作Ax+By+Cz=D的形式

上标表示t,下标表示x,假设时间步长均匀有单位步长Δt,空间步长(节点距离)不均匀。

连续方程

A_{j}^{*}Q_{j+1}^{n+1}+B_{j}^{*}h_{j}^{n+1}+C_{j}^{*}Q_{j-1}^{n+1}=D_{j}^{*}

 A_{j}^{*}=\frac{1}{2\left ( x_{j+1}-x_{j-1} \right )}

B_{j}^{*}=\frac{D_{1}}{\Delta t}

C_{j}^{*}=-\frac{1}{2\left ( x_{j+1}-x_{j-1} \right )}

D_{j}^{*}=\frac{D_{1}}{\Delta t}h_{j}^{n}-\frac{1}{2\left ( x_{j+1}-x_{j-1} \right )}Q_{j+1}^{n}+\frac{1}{2\left ( x_{j+1} -x_{j-1}\right )}Q_{j-1}^{n}

动量方程

 个人理解应为

A_{j-1}^{}h_{j}^{n+1}+B_{j-1}^{}Q_{j-1}^{n+1}+C_{j-1}^{}h_{j-2}^{n+1}=D_{j-1}^{}

A_{j-1}=-\frac{D_{2}}{\Delta t}\frac{x_{j-1}-x_{j-2}}{x_{j}-x_{j-2}}-\frac{D_{3}}{2(x_{j}-x_{j-2})}

B_{j-1}^{}=D_{4}\left | Q_{j-1}^{n} \right |+\frac{1}{\Delta t}

C_{j-1}^{}=-\frac{D_{2}}{\Delta t}\frac{x_{j}-x_{j-1}}{x_{j}-x_{j-2}}+\frac{D_{3}}{2\left ( x_{j}-x_{j-2} \right )}

D_{j-1}=\frac{1}{\Delta t}Q_{j-1}^{n}-(\frac{D_{2}}{\Delta t}\frac{x_{j}-x_{j-1}}{x_{j}-x_{j-2}}+\frac{D_{3}}{2(x_{j}-x_{j-2})})h_{j-2}^{n}-(\frac{D_{2}}{\Delta t}\frac{x_{j-1}-x_{j-2}}{x_{j}-x_{j-2}}-\frac{D_{3}}{2(x_{j}-x_{j-2})})h_{j}^{n}

5.假设Q、h在空间上顺序交错求解

h_{j+1}^{n+1}=E_{j}Q_{j}^{n+1}+F_{j}

Q_{j+1}^{n+1}=E_{j}^{*}h_{j}^{n+1}+F_{j}^{*}

代入上一步的简化方程

连续方程

 A_{j}^{*}E_{j}^{*}h_{j}^{n+1}+B_{j}^{*}h_{j}^{n+1}+C_{j}^{*}Q_{j-1}^{n+1}=D_{j}^{*}-A_{j}^{*}F_{j}^{*}

h_{j}^{n+1}=\frac{-C_{j}}{A_{j}^{*}E_{j}^{*}+B_{j}^{*}}Q_{j-1}^{n+1}+\frac{D_{j}^{*}-A_{j}^{*}F_{j}^{*}}{A_{j}^{*}E_{j}^{*}+B_{j}^{*}}

运动方程

A_{j-1}E_{j-1}Q_{j-1}^{n+1}+B_{j-1}^{}Q_{j-1}^{n+1}+C_{j-1}^{}h_{j-2}^{n+1}=D_{j-1}^{}

Q_{j-1}^{n+1}=\frac{-C_{j-1}}{A_{j-1}E_{j-1}+B_{j-1}}h_{j-2}^{n+1}+\frac{D_{j-1}-A_{j-1}F_{j-1}}{A_{j-1}E_{j-1}+B_{j-1}}

形式同假设,因此

E_{j-1}=\frac{-C_{j}^{*}}{A_{j}^{*}E_{j}^{*}+B_{j}^{*}}    ,   F_{j-1}=\frac{D_{j}^{*}-A_{j}^{*}F_{j}^{*}}{A_{j}^{*}E_{j}^{*}+B_{j}^{*}}

E_{j-2}^{*}=\frac{-C_{j-1}}{A_{j-1}E_{j-1}+B_{j-1}}   ,   F_{j-2}^{*}=\frac{D_{j-1}-A_{j-1}F_{j-1}}{A_{j-1}E_{j-1}+B_{j-1}}

 6.边界条件

假设x=J处流量Q给定,则最后一个方程是

 A_{j-1}^{*}Q_{j}^{n+1}+B_{j-1}^{*}h_{j-1}^{n+1}+C_{j-1}^{*}Q_{j-2}^{n+1}=D_{j-1}^{*}

可得,h_{j-1}^{n+1}=\frac{-C_{j-1}^{*}}{B_{j-1}^{*}}Q_{j-2}^{n+1}+\frac{D_{j-1}^{*}-A_{j-1}^{*}Q_{j}^{n+1}}{B_{j-1}^{*}}

h_{j}^{n+1}=\frac{-C_{j}}{A_{j}^{*}E_{j}^{*}+B_{j}^{*}}Q_{j-1}^{n+1}+\frac{D_{j}^{*}-A_{j}^{*}F_{j}^{*}}{A_{j}^{*}E_{j}^{*}+B_{j}^{*}}

可得,h_{j-1}^{n+1}=\frac{-C_{j-1}^{*}}{A_{j-1}^{*}E_{j-1}^{*}+B_{j-1}^{*}}Q_{j-2}^{n+1}+\frac{D_{j-1}^{*}-A_{j-1}^{*}F_{j-1}^{*}}{A_{j-1}^{*}E_{j-1}^{*}+B_{j-1}^{*}}

两式系数相比较,可得

E_{j-1}^{*}=0F_{j-1}^{*}=Q_{j}^{n+1}

类似的,如果边界x=J处水深给定,则

E_{j-1}^{}=0F_{j-1}=h_{j}^{n+1}

7.追赶法

假设x=J处边界条件Q给定,即已知Q_{j}^{n+1}

根据E_{j-1}^{*}=0F_{j-1}^{*}=Q_{j}^{n+1},可得E_{j-1}^{*}F_{j-1}^{*}

又根据4.简化方程组-连续方程,可得A_{j-1}^{*}B_{j-1}^{*}C_{j-1}^{*},但D_{j-1}^{*}=f\left ( h_{j-1}^{n}, Q_{j}^{n},Q_{j-2}^{n}\right )(不会求)

根据 E_{j-1}=\frac{-C_{j}^{*}}{A_{j}^{*}E_{j}^{*}+B_{j}^{*}}    ,   F_{j-1}=\frac{D_{j}^{*}-A_{j}^{*}F_{j}^{*}}{A_{j}^{*}E_{j}^{*}+B_{j}^{*}},可得E_{j-2},F_{j-2}

又根据4.简化方程组-运动方程,D1、D2、D3、D4都取t=(n+1/2)Δt的值(不会求),再求得A_{j-1},B_{j-1},C_{j-1},但D_{j-1}=f\left ( Q_{j-2}^{n},h_{j-3}^{n},h_{j-1}^{n} \right )(不会求)

根据 E_{j-2}^{*}=\frac{-C_{j-1}}{A_{j-1}E_{j-1}+B_{j-1}}   ,   F_{j-2}^{*}=\frac{D_{j-1}-A_{j-1}F_{j-1}}{A_{j-1}E_{j-1}+B_{j-1}},可得E_{j-3}^{*},F_{j-3}^{*}

假设另一边界为h,即已知h_{0}^{n+1}

追的过程:Q_{j}^{n+1}E_{j-1}^{*}F_{j-1}^{*}E_{j-2},F_{j-2}E_{j-3}^{*},F_{j-3}^{*}→......→E_{0}^{*},F_{0}^{*}

根据 Q_{j+1}^{n+1}=E_{j}^{*}h_{j}^{n+1}+F_{j}^{*},h_{j+1}^{n+1}=E_{j}Q_{j}^{n+1}+F_{j}

赶的过程: h_{0}^{n+1}Q_{1}^{n+1}h_{2}^{n+1}→......→Q_{j}^{n+1}

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值