【剑指Offer】构建乘积数组(暴力 / 分解)

题目描述

给定一个数组A[0,1,…,n-1],请构建一个数组B[0,1,…,n-1],其中B中的元素B[i]=A[0]A[1]…*A[i-1]A[i+1]…*A[n-1]。不能使用除法。(注意:规定B[0] = A[1] * A[2] * … * A[n-1],B[n-1] = A[0] * A[1] * … * A[n-2];)

1、暴力解法

B[i]是指A[i]中除了第i个元素的所有乘积,那就直接两层循环
时间复杂度O(n^2),空间复杂度O(n)

class Solution {
public:
    vector<int> multiply(const vector<int>& A) {
        vector<int> anws;
        for(int i=0; i<A.size(); i++){
            int result = 1;
            for(int j=0; j<A.size(); j++){
                if(j==i)   
                    continue;
                result *= A[j];
            }
            anws.push_back(result);
        }
        return anws;
    }
};

2、进阶解法

B[i]是A[i]左边i个元素的乘积*右边len-i-1个元素的乘积,那就分两边算。

  1. 第1次遍历A[i],得B[i]左边元素乘积;
  2. 第2次遍历A[i],得B[i]右边边元素乘积;
  3. 第3次循环将两个乘积相乘。这样就消除了两层循环,用3倍空间换了时间。

时间复杂度O(n),空间复杂度O(n)

class Solution {
public:
    vector<int> multiply(const vector<int>& A) {
        vector<int> anws,leftmulti,rightmulti;
        if(A.size()==0) 
            return anws;
        int len = A.size();
        //左侧乘积:顺序存储
        cout << "left...";
        leftmulti.push_back(1); //B[0]的左侧乘积默认为1
        for(int i=0; i<=len-2; i++){
            int result = leftmulti.back() * A[i];
            leftmulti.push_back( result );
        }
        cout << "finished" << endl;
        //右侧乘积:逆序存储
        rightmulti.push_back(1); //B[len-1]的右侧乘积默认为1
        for(int i=len-1; i>=1; i--){
            int result = rightmulti.back() * A[i]; 
            rightmulti.push_back(result);
        }
        for(int i=0; i<len; i++){
            anws.push_back( leftmulti[i] * rightmulti[len-i-1] );
        }
        return anws;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值