题目描述
给定一个数组A[0,1,…,n-1],请构建一个数组B[0,1,…,n-1],其中B中的元素B[i]=A[0]A[1]…*A[i-1]A[i+1]…*A[n-1]。不能使用除法。(注意:规定B[0] = A[1] * A[2] * … * A[n-1],B[n-1] = A[0] * A[1] * … * A[n-2];)
1、暴力解法
B[i]是指A[i]中除了第i个元素的所有乘积,那就直接两层循环
时间复杂度O(n^2),空间复杂度O(n)
class Solution {
public:
vector<int> multiply(const vector<int>& A) {
vector<int> anws;
for(int i=0; i<A.size(); i++){
int result = 1;
for(int j=0; j<A.size(); j++){
if(j==i)
continue;
result *= A[j];
}
anws.push_back(result);
}
return anws;
}
};
2、进阶解法
B[i]是A[i]左边i个元素的乘积*右边len-i-1个元素的乘积,那就分两边算。
- 第1次遍历A[i],得B[i]左边元素乘积;
- 第2次遍历A[i],得B[i]右边边元素乘积;
- 第3次循环将两个乘积相乘。这样就消除了两层循环,用3倍空间换了时间。
时间复杂度O(n),空间复杂度O(n)
class Solution {
public:
vector<int> multiply(const vector<int>& A) {
vector<int> anws,leftmulti,rightmulti;
if(A.size()==0)
return anws;
int len = A.size();
//左侧乘积:顺序存储
cout << "left...";
leftmulti.push_back(1); //B[0]的左侧乘积默认为1
for(int i=0; i<=len-2; i++){
int result = leftmulti.back() * A[i];
leftmulti.push_back( result );
}
cout << "finished" << endl;
//右侧乘积:逆序存储
rightmulti.push_back(1); //B[len-1]的右侧乘积默认为1
for(int i=len-1; i>=1; i--){
int result = rightmulti.back() * A[i];
rightmulti.push_back(result);
}
for(int i=0; i<len; i++){
anws.push_back( leftmulti[i] * rightmulti[len-i-1] );
}
return anws;
}
};