题目
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:
可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
常规思路O(N^2)
- 状态定义成:dp[i] 表示以 nums[i] 结尾的「上升子序列」的长度。注意:这个定义中 nums[i] 必须被选取,且必须是这个子序列的最后一个元素。
- 遍历到 nums[i] 时,需要把下标 i 之前的所有的数都看一遍;只要 nums[i] 严格大于在它位置之前的某个数,那么 nums[i] 就可以接在这个数后面形成一个更长的上升子序列;因此,dp[i] 就等于下标 i 之前严格小于 nums[i] 的状态值的最大者 +1。
代码
动态规划。
- 定义dp[i]表示以nums[i]结尾的最长上升子序列的长度。
- 状态转移:对于nums[i],需要遍历前面的所有元素nums[0…i-1],如果比自己小,那就在它基础上+1。比自己大就不管,最终取最大值。
- 初始化dp[i]都为1,默认至少有自己。最终输出dp数组的最大值
class Solution {
public:
/*
动态规划。定义dp[i]表示以nums[i]结尾的最长上升子序列的长度。状态转移对于nums[i],需要遍历前面的所有元素nums[0...i-1],如果比自己小,那就在它基础上+1。比自己大就不管,最终取最大值。
初始化dp[i]都为1,默认至少有自己。最终输出dp数组的最大值
*/
int lengthOfLIS(vector<int>& nums) {
if( nums.size() <= 1 ){
return nums.size();
}
int dp[nums.size()];
//初始化
for(int i=0; i<nums.size(); i++){
dp[i] = 1;
}
int anws = 1;
for(int i=1; i<nums.size(); i++){
for(int j=0; j<i; j++){
//元素值比自己小,那就可以在它基础上+1
if( nums[j] < nums[i] ){
dp[i] = max(dp[i], dp[j]+1);
}
}
anws = max(anws, dp[i]);
}
//输出dp数组中的最大值
return anws;
}
};
进阶O(NlogN)
- 常规思路:固定子序列的尾部元素nums[i],寻找上升子序列的最大长度dp[i]。在这个过程中每次都需要遍历前面的元素大小。
- 进阶思路:固定子序列的长度i,寻找这个长度下的上升子序列的尾部元素,保存最小值tail[i]。