【leetcode】300. 最长上升子序列(动态规划:dp[i] 表示以 nums[i] 结尾的「上升子序列」的长度)

题目

给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4 
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:

可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。你算法的时间复杂度应该为 O(n2) 。

进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

常规思路O(N^2)

参考leetcode清晰思路

  • 状态定义成:dp[i] 表示以 nums[i] 结尾的「上升子序列」的长度。注意:这个定义中 nums[i] 必须被选取,且必须是这个子序列的最后一个元素。
  • 遍历到 nums[i] 时,需要把下标 i 之前的所有的数都看一遍;只要 nums[i] 严格大于在它位置之前的某个数,那么 nums[i] 就可以接在这个数后面形成一个更长的上升子序列;因此,dp[i] 就等于下标 i 之前严格小于 nums[i] 的状态值的最大者 +1。

代码

动态规划。

  • 定义dp[i]表示以nums[i]结尾的最长上升子序列的长度。
  • 状态转移:对于nums[i],需要遍历前面的所有元素nums[0…i-1],如果比自己小,那就在它基础上+1。比自己大就不管,最终取最大值。
  • 初始化dp[i]都为1,默认至少有自己。最终输出dp数组的最大值
class Solution {
public:
/*
动态规划。定义dp[i]表示以nums[i]结尾的最长上升子序列的长度。状态转移对于nums[i],需要遍历前面的所有元素nums[0...i-1],如果比自己小,那就在它基础上+1。比自己大就不管,最终取最大值。
初始化dp[i]都为1,默认至少有自己。最终输出dp数组的最大值
*/
    int lengthOfLIS(vector<int>& nums) {
        if( nums.size() <= 1 ){
            return nums.size();
        }
        int dp[nums.size()];
        //初始化
        for(int i=0; i<nums.size(); i++){
            dp[i] = 1; 
        }

        int anws = 1;
        for(int i=1; i<nums.size(); i++){
            for(int j=0; j<i; j++){
                //元素值比自己小,那就可以在它基础上+1
                if( nums[j] < nums[i] ){
                    dp[i] = max(dp[i], dp[j]+1);
                }
            }
            anws = max(anws, dp[i]);
        }
        //输出dp数组中的最大值
        return anws;
    }
};

进阶O(NlogN)

  • 常规思路:固定子序列的尾部元素nums[i],寻找上升子序列的最大长度dp[i]。在这个过程中每次都需要遍历前面的元素大小。
  • 进阶思路:固定子序列的长度i,寻找这个长度下的上升子序列的尾部元素,保存最小值tail[i]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值