题目
请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度。
示例 1:
输入: "abcabcbb"
输出: 3
解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。
示例 2:
输入: "bbbbb"
输出: 1
解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。
示例 3:
输入: "pwwkew"
输出: 3
解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。
请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列,不是子串。
提示:
s.length <= 40000
思路
动态规划+哈希表
- 动态规划:设dp[i]表示以i为结尾的不含重复字符的子字符串长度。
- 那么初始值dp[0]=1,最终的目的是求最长即max(dp[0], … , dp[s.length()-1])。
- 状态转移方程: 判断最近s[j]同字符的出现位置是否被dp[j-1]包含
(1)如果不存在或者不包含那就直接累加:dp[j] = dp[j-1]+1(即对于s[j]左边的字符,如果有和s[j]相同的字符,设最近的一个的下标为i,那么这个条件相当于是j-i>dp[j-1]。不存在的话i=-1 )
(2)否则如果有重复的,那dp[j]=j-i - 由此我们需要记录每个字符最近一次出现的下标位置,可用哈希表
时间复杂度O(N),空间复杂度O(N):哈希表和dp数组。
class Solution {
public:
int lengthOfLongestSubstring(string s) {
/*
动态规划:设dp[i]表示以i为结尾的不含重复字符的子字符串长度。
那么初始值dp[0]=1,最终的目的是求最长即max(dp[0], ... , dp[s.length()-1])。
状态转移方程:
(1)dp[j] = dp[j-1]+1(对于s[j]左边的字符,如果有和s[j]相同的字符,设最近的一个的下标为i,那么这个条件相当于是j-i>dp[j-1]。不存在的话i=-1 )
(2)否则如果有重复的,那dp[j]=j-i
由此我们需要记录每个字符最近一次出现的下标位置,可用哈希表
*/
int size=s.length();
if(size<=1){
return size;
}
int anws = 0;
vector<int> dp(size);
unordered_map<char,int> unmap; //记录每个字符最近一次出现的下标位置
//初始
dp[0]=1;
unmap[s[0]] = 0;
//开始遍历
for(int i=1;i<size;i++){
//从未出现:直接累加,并记录位置
if( unmap.find(s[i]) == unmap.end() ){
dp[i] = dp[i-1] + 1;
}else{
//判断最近出现的位置是否被dp[i-1]包含
int pos = unmap[s[i]];
//不包含:直接累加,更新位置
if( (i-pos) > dp[i-1] ){
dp[i] = dp[i-1] + 1;
}else{//包含:那就从不包含的位置开始算起,并更新位置
dp[i] = i - pos;
}
}
//记录或更新位置
unmap[s[i]] = i;
//更新最长值
if( anws < dp[i] )
anws = dp[i];
}
return anws;
}
};
节省空间
因为每次dp只用到上一次的值,所以我们不用数组存所有dp,只保存上一次的即可,节省空间。cur表示dp[i],pre表示dp[i-1]
时间复杂度O(N),空间复杂度O(N):哈希表。
class Solution {
public:
int lengthOfLongestSubstring(string s) {
/*
动态规划:设dp[i]表示以i为结尾的不含重复字符的子字符串长度。
那么初始值dp[0]=1,最终的目的是求最长即max(dp[0], ... , dp[s.length()-1])。
状态转移方程:
(1)dp[j] = dp[j-1]+1(对于s[j]左边的字符,如果有和s[j]相同的字符,设最近的一个的下标为i,那么这个条件相当于是j-i>dp[j-1]。不存在的话i=-1 )
(2)否则如果有重复的,那dp[j]=j-i
由此我们需要记录每个字符最近一次出现的下标位置,可用哈希表
因为每次dp只用到上一次的值,所以我们不用数组存所有dp,只保存上一次的即可,节省空间
*/
int size=s.length();
if(size<=1){
return size;
}
int anws = 0;
unordered_map<char,int> unmap; //记录每个字符最近一次出现的下标位置
//初始
int pre,cur;
pre=1;
unmap[s[0]] = 0;
//开始遍历
for(int i=1;i<size;i++){
//从未出现:直接累加,并记录位置
if( unmap.find(s[i]) == unmap.end() ){
cur = pre + 1;
}else{
//判断最近出现的位置是否被dp[i-1]包含
int pos = unmap[s[i]];
//不包含:直接累加,更新位置
if( (i-pos) > pre ){
cur = pre + 1;
}else{//包含:那就从不包含的位置开始算起,并更新位置
cur = i - pos;
}
}
//记录或更新位置
unmap[s[i]] = i;
//更新最长值
if( anws < cur )
anws = cur;
//更新pre
pre = cur;
}
return anws;
}
};