pytorch学习(随手记)

使用 PyTorch 的 Dataset 类来创建一个自定义的数据集类 MyData,用于加载图像和对应的标签。

首先提前下载好数据集添加到目录

  1. 初始化 (__init__ 方法):

        def __init__(self , root_dir , label_dir):
            self.root_dir = root_dir
            self.label_dir = label_dir
            self.path = os.path.join(self.root_dir,self.label_dir)
            self.img_path = os.listdir(self.path)
  2. 获取单个数据项 (__getitem__ 方法):

        def __getitem__(self, idx):
            img_name = self.img_path[idx]
            img_item_path = os.path.join(self.root_dir,self.label_dir,img_name)
            img = Image.open(img_item_path)
            label = self.label_dir
            return img, label

完整代码展示: 

from torch.utils.data import Dataset
from PIL import Image
import os

class MyData(Dataset):

    def __init__(self , root_dir , label_dir):
        self.root_dir = root_dir
        self.label_dir = label_dir
        self.path = os.path.join(self.root_dir,self.label_dir)
        self.img_path = os.listdir(self.path)
        
    def __getitem__(self, idx):
        img_name = self.img_path[idx]
        img_item_path = os.path.join(self.root_dir,self.label_dir,img_name)
        img = Image.open(img_item_path)
        label = self.label_dir
        return img, label

    def __len__(self):
        return len(self.img_path)

root_dir="dataset/train"
ants_label_dir = "ants"
bees_label_dir = "bees"
ants_dataset = MyData(root_dir , ants_label_dir)
bees_dataset = MyData(root_dir , bees_label_dir)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值