最优情况(每次都能刚好二分):
确认第1个数要遍历n个数
确认第2个数需要遍历n/2个数,第3个数需要遍历n/2个数
确认第4、5、6、7个数各需要遍历n/4个数
将分段缩小到1,则需要分x次,即1=n/(2^x),x=log2n,即一共有log2n层
将每一层都近似得看作遍历n个数,则总遍历个数为n*log2n
即最优情况时间复杂度为O(nlogn)
最差情况(每次都以最小或最大数为界点值,没能将数组二分):
确认第1个数要遍历n个数
确认第2个数要遍历n-1个数
以此类推
等差求和得遍历个数为n*(1+n)/2,时间复杂度为O(n^2)
这里也能看出为什么分段能提高效率:分段后,确认一个数所需遍历的区间一直被指数级缩小;而不分段区间每次只缩小1。
欢迎指正