HDU 4035 Maze

http://acm.hdu.edu.cn/showproblem.php?pid=4035

经典概率DP。

#include <ctime>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
#include <map>
#include <algorithm>
using namespace std;
const int maxn = 10010;
double k[maxn], e[maxn];
double A[maxn], B[maxn], C[maxn];
vector<int> g[maxn];

/**
    dp求期望的题。
    题意:
    有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
    从结点1出发,开始走,在每个结点i都有3种可能:
        1.被杀死,回到结点1处(概率为ki)
        2.找到出口,走出迷宫 (概率为ei)
        3.和该点相连有m条边,随机走一条
    求:走出迷宫所要走的边数的期望值。

    设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。

    叶子结点:
    E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
         = ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei);

    非叶子结点:(m为与结点相连的边数)
    E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
         = ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei);

    设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci;

    对于非叶子结点i,设j为i的孩子结点,则
    ∑(E[child[i]]) = ∑E[j]
                   = ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
                   = ∑(Aj*E[1] + Bj*E[i] + Cj)
    带入上面的式子得
    (1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
    由此可得
    Ai =        (ki+(1-ki-ei)/m*∑Aj)   / (1 - (1-ki-ei)/m*∑Bj);
    Bi =        (1-ki-ei)/m            / (1 - (1-ki-ei)/m*∑Bj);
    Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj);

    对于叶子结点
    Ai = ki;
    Bi = 1 - ki - ei;
    Ci = 1 - ki - ei;

    从叶子结点开始,直到算出 A1,B1,C1;

    E[1] = A1*E[1] + B1*0 + C1;
    所以
    E[1] = C1 / (1 - A1);
    若 A1趋近于1则无解...
**/

bool dfs(int u, int p) {
    // 叶子节点
    if(g[u].size() == 1 && p != -1) {
        A[u] = k[u];
        B[u] = 1 - k[u] - e[u];
        C[u] = 1 - k[u] - e[u];
        return true;
    }
    int size = g[u].size();
    A[u] = k[u];
    B[u] = (1 - k[u] - e[u]) / size;
    C[u] = 1 - k[u] - e[u];
    double t1 = 0, t2 = 0, t3 = 0;
    for(int i = 0; i < size; ++i) {
        int v = g[u][i];
        if(v == p) continue;
        if(!dfs(v, u)) continue;  
        t1 += A[v];
        t2 += B[v];
        t3 += C[v];
    }
    double t = 1 - (1 - k[u] - e[u]) / size * t2;
    if(abs(t) < 1e-10) return false;
    A[u] += (1 - k[u] - e[u]) / size * t1;
    A[u] /= t;
    B[u] /= t;
    C[u] += (1 - k[u] - e[u]) / size * t3;
    C[u] /= t;
    return true;
}

int main() {

    //freopen("aa.in", "r", stdin);

    int T, n, x, y;
    int kcase = 0;
    scanf("%d", &T);
    while(T--) {
        kcase++;
        for(int i = 0; i < maxn; ++i) g[i].clear();
        scanf("%d", &n);
        for(int i = 1; i < n; ++i) {
            scanf("%d %d", &x, &y);
            g[x].push_back(y);
            g[y].push_back(x);
        }
        for(int i = 1; i <= n; ++i) {
            scanf("%lf %lf", &k[i], &e[i]);
            k[i] /= 100.0;
            e[i] /= 100.0;
        }
        printf("Case %d: ", kcase);
        if(!dfs(1, -1) || abs(A[1]-1.0) < 1e-10) {
            printf("impossible\n");
        } else {
            printf("%.6lf\n", C[1]/(1.0-A[1]));
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值