图像分类器(KNN)

本文介绍了KNN(K最近邻)图像分类算法的工作原理,包括分类过程、KNN的实现步骤以及选择合适的距离度量和超参数k的重要性。讨论了KNN的优缺点,如在测试时可能的性能问题和不直观的距离度量。最后,强调了通过验证集或交叉验证选择最佳超参数以优化分类器性能的方法。
摘要由CSDN通过智能技术生成

分类过程和数据集

分类过程:
这里写图片描述
数据集:
CIFAR数据库(50000训练图像,10000测试图像,10 labels)
这里写图片描述

KNN

KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近;
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值