迁移学习总结(One Shot Learning, Zero Shot Learning)

本文介绍了迁移学习的多种类型,包括Source Data与Target Data均有标签的情况下的Fine-tuning和Multitask Learning,Source Data有标签而Target Data无标签时的Domain-adversarial training和Zero-shot Learning,以及Source Data无标签但Target Data有标签的Self-taught Learning。文章通过实例解释了如何在不同标签情况下应用迁移学习,特别是强调了在Zero-shot Learning中如何利用特征细化进行类别推断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

迁移学习

综述

这段时间要做元学习相关的工作所以,首先对迁移学习了简单的学习分类,接下来会持续更新对于元学习论文的阅读还有理解。
以前接触最多的是图像的分类问题,我们将一个很大的数据集分为两个部分,一部分作为训练集,剩下的部分作为测试集。我们在训练集上面根据神经网络的基础算法比如back propagation 和 SGD算法对网络进行训练,训练结束之后用测试集对网络的泛化能力进行测试,通常用准确率表示。这就是简单的深度学习,这些学习任务的重点是训练出一个泛化能力很强的网络,由于是从相同的数据集里面抽离出来的,所以训练集还有测试集的种类都是相同的,没有多余的类。比如说,MNIST是一个简单的手写数字识别的库,训练集和测试集都是手写的数字,只包含0,1,2,3,4,5,6,7,8,9,0 十个数,不会让你完成其他的任务。
相类似的问题如下图:
这里写图片描述
可以看到在后面的两个任务里面做了我们看起来毫无关系的迁移学习,这实现起来是相当困难的,甚至可能不会取得很好的效果。
更多的例子见:1 and 2
下面我们对目前存在的迁移学习的种类进行分类,在迁移学习的学习任务中通常包括两个集合,Source Data还有 Target Data,source data。source data是我们解决问题之前就知道的相关的数据,它和Target任务之间存在一定的关系。Target Data

Source Data 与Target Data 都有标签

Fine-tuning

  • 任务描述:Source data: (xs
### Zero-Shot 学习与迁移学习的概念、区别及应用场景 #### 定义与概念 Zero-shot 学习是一种机器学习范式,在这种情况下,模型能够识别未见过的数据类别。这通常通过利用辅助信息来实现,比如属性描述或其他形式的知识图谱[^2]。 相比之下,迁移学习是指将在一个领域或任务上学到的知识应用到另一个不同但相关联的任务上。这种方法可以显著减少新任务所需的训练时间和资源需求[^1]。 #### 主要区别 - **数据依赖度**:零样本学习几乎不需要目标类别的标注实例;而迁移学习则至少部分依赖于源域内的标记数据。 - **适用场景**:当面对完全未知的新对象分类时,零样本学习更为有效;对于有相似特征分布的不同任务间传递经验,则更适合采用迁移学习策略。 - **机制原理**:零样本学习依靠外部知识库(如语义向量空间)建立已知和未知类间的联系;迁移学习则是基于共享表征的学习框架,调整参数以适应新的环境条件。 #### 应用案例分析 ##### Zero-Shot 学习的应用场景 1. 图像识别中的细粒度分类——即使某些特定物种从未出现在训练集中也能被正确辨认出来; 2. 自然语言处理里的实体链接任务——能够在没有事先遇到过的实体名称的情况下做出合理预测; 3. 跨语言理解能力提升——借助跨语言词典使得系统可以在一种语言中学会的东西应用于其他多种语言环境中去。 ##### 迁移学习的应用场景 1. 计算机视觉领域内从大规模通用图片数据库迁移到特定行业的小规模定制化图像集合上的再训练过程; 2. 文本情感分析方面,先在一个大型评论网站上构建基础模型之后再针对某电商平台商品评价做微调优化工作; 3. 语音合成技术里把一个人的声音特性转移到另一个人身上从而创造出逼真的模仿效果。 ```python # 示例代码展示如何简单模拟两种学习方式的效果对比 import numpy as np def zero_shot_learning(example_input): # 假设这里有一个预先定义好的映射关系用于推断未曾见过的例子 unseen_class_mapping = {"new_object": "predicted_category"} return unseen_class_mapping.get(str(example_input), "unknown") def transfer_learning(pretrained_model, new_dataset): # 对预训练模型进行微调操作以便更好地适用于新数据集 fine_tuned_model = pretrained_model.fit(new_dataset) return fine_tuned_model.predict(new_dataset) example_data_for_zero_shot = 'unseen_example' print(f"Zero-Shot Prediction: {zero_shot_learning(example_data_for_zero_shot)}") pre_trained_classifier = lambda x: ['positive' if i%2==0 else 'negative' for i in range(len(x))] new_samples = ["sample_{}".format(i) for i in range(5)] predictions_after_transfer = transfer_learning(pre_trained_classifier, new_samples) print(f"After Transfer Learning Predictions on New Data: {predictions_after_transfer}") ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值