Tensorflow实例:实现VGG

本文详细介绍了VGGNet的结构和设计理念,包括3*3卷积核和2*2最大池化的堆叠,以及其在图像特征提取中的应用。通过多层卷积层的串联,VGGNet实现了深网络并减少了参数数量。文章还讨论了VGGNet的训练策略、预测方法、数据增强技术,并指出LRN层效果有限,1*1卷积不及3*3卷积。最后,文中比较了VGGNet与AlexNet的性能,表明更深的网络有助于模型收敛。
摘要由CSDN通过智能技术生成

VGGNet探索了卷积神经网络的深度与其性能之间的关系,通过反复堆叠3*3的小型卷积核和2*2的最大池化层,VGGNet成功地构筑了16~19层的卷积神经网络。VGGNet的结构非常简洁,整个网络都使用了同样大小的卷积核尺寸(3*3)和最大池化层(2*2)。
到目前为止,VGGNet依然经常被用来提取图像特征。VGGNet训练后的模型参数在其官网上开源了,可用来在domain specific的图像分类任务上进行再训练(相当于提供了非常好的初始化权重),因此被用在了很多地方。VGGNet的网络结构如下图所示:

这里写图片描述

在VGGNet中运用到的技巧:

  1. 经常出现多个完全一样的3*3的卷积层堆叠在一起的情况,这其实是非常有用的设计。例如2个3*3的卷积层串联相当于1个5*5的卷积层,即一个像素会跟周围5*5的像素产生关联,可以说感受野大小为5*5。而3个3*3的卷积层串联的效果相当于一个7*7的卷积层。但是3个3*3的卷积层拥有比1个7*7的卷积层更少的参数,只有后者的 33377=55 。最重要的是,3个3*3的卷积层拥有比一个7*7的卷积层更多的非线性变换,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值