Python机器学习应用-降维之NMF

标签: Python NMF sklearn machine learning
14人阅读 评论(0) 收藏 举报
分类:

非负矩阵分解(NMF)

非负矩阵分解(Non-negative Matrix Factorization,NMF)是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。

基本思想:

给定一个非负矩阵V,NMF能够找到一个非负矩阵W和一个非负矩阵H,使得矩阵WH的乘积近似等于矩阵V中的值。

Vnm=WnkHkm

  • W矩阵:基础图像矩阵,相当于从原矩阵中抽取出来的特征。
  • H矩阵:系数矩阵。
    这里写图片描述
  • NMF能够广泛应用于图像分析、文本挖掘和语音处理等领域。
    这里写图片描述

N优化目标:

最小化W矩阵H矩阵的乘积和原始矩阵之间的差别。

argmin12||XWH||2=12i,j(XijWHij)2

基于KL散度的优化目标,损失函数如下:
argminJ(W,H)=i,j(XijlnXijWHijXij+WHij)

sklearn中NMF:

在sklearn库中,可以使用sklearn.decomposition.NMF加载NMF算法,主要参数有:

  • n_components:用于指定分解后矩阵的单个维度k;
  • init:W矩阵和H矩阵的初始化方式,默认为‘nndsvdar’。

实例:NMF人脸数据特征提取

目标:

已知Olivetti人脸数据共400个,每个数据是64*64大小。由于NMF分解得到的W矩阵相当于从原始矩阵中提取的特征,那么就可以使用NMF对400个人脸数据进行特征提取。
通过设置k的大小,设置提取的特征的数目。在本实验中设置k=6,随后将提取的特征以图像的形式展示出来。
这里写图片描述

实例程序编写:

1 建立工程。导入sklearn相关工具包:

from numpy.random import RandomState
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn import decomposition

2 设置基本参数并加载数据

n_row, n_col = 2, 3 #设置图像显示时的排列情况,如右图
n_components = n_row * n_col #设置提取的特征数目
image_shape = (64, 64) # 
dataset = fetch_olivetti_faces(shuffle=True, random_state=RandomState(0))
faces = dataset.data #加载数据并打乱顺序

3 设置图像的展示方式:

def plot_gallery(title, images, n_col=n_col, n_row=n_row):
    plt.figure(figsize=(2. * n_col, 2.26 * n_row)) 
    plt.suptitle(title, size=16)

    for i, comp in enumerate(images):
        plt.subplot(n_row, n_col, i + 1)
        vmax = max(comp.max(), -comp.min())

        plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,
                   interpolation='nearest', vmin=-vmax, vmax=vmax)
        plt.xticks(())
        plt.yticks(())
    plt.subplots_adjust(0.01, 0.05, 0.99, 0.94, 0.04, 0.)

4 创建特征提取的对象NMF,使用PCA作为对比:

estimators = [
    ('Eigenfaces - PCA using randomized SVD',
         decomposition.PCA(n_components=6,whiten=True)),

    ('Non-negative components - NMF',
         decomposition.NMF(n_components=6, init='nndsvda', tol=5e-3))

5 降维后数据点的可视化:

for name, estimator in estimators:
    print("Extracting the top %d %s..." % (n_components, name))
    print(faces.shape)
    estimator.fit(faces)
    components_ = estimator.components_
    plot_gallery(name, components_[:n_components])

plt.show()

这里写图片描述

附件

from numpy.random import RandomState
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_olivetti_faces
from sklearn import decomposition


n_row, n_col = 2, 3
n_components = n_row * n_col
image_shape = (64, 64)


###############################################################################
# Load faces data
dataset = fetch_olivetti_faces(shuffle=True, random_state=RandomState(0))
faces = dataset.data

###############################################################################
def plot_gallery(title, images, n_col=n_col, n_row=n_row):
    plt.figure(figsize=(2. * n_col, 2.26 * n_row)) 
    plt.suptitle(title, size=16)

    for i, comp in enumerate(images):
        plt.subplot(n_row, n_col, i + 1)
        vmax = max(comp.max(), -comp.min())

        plt.imshow(comp.reshape(image_shape), cmap=plt.cm.gray,
                   interpolation='nearest', vmin=-vmax, vmax=vmax)
        plt.xticks(())
        plt.yticks(())
    plt.subplots_adjust(0.01, 0.05, 0.99, 0.94, 0.04, 0.)


plot_gallery("First centered Olivetti faces", faces[:n_components])
###############################################################################

estimators = [
    ('Eigenfaces - PCA using randomized SVD',
         decomposition.PCA(n_components=6,whiten=True)),

    ('Non-negative components - NMF',
         decomposition.NMF(n_components=6, init='nndsvda', tol=5e-3))
]

###############################################################################

for name, estimator in estimators:
    print("Extracting the top %d %s..." % (n_components, name))
    print(faces.shape)
    estimator.fit(faces)
    components_ = estimator.components_
    plot_gallery(name, components_[:n_components])

plt.show()
查看评论

Python机器学习应用 | 降维——NMF方法及实例

1 非负矩阵分解(NMF)1、非负矩阵分解(Non-negative Matrix Factorization ,NMF)是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。 2、基本思想:给定...
  • JinbaoSite
  • JinbaoSite
  • 2017-06-29 22:24:19
  • 2553

文本挖掘之降维技术之特征抽取之非负矩阵分解(NMF)

通常的矩阵分解会把一个大的矩阵分解为多个小的矩阵,但是这些矩阵的元素有正有负。而在现实世界中,比如图像,文本等形成的矩阵中负数的存在是没有意义的,所以如果能把一个矩阵分解成全是非负元素是很有意义的。在...
  • u011955252
  • u011955252
  • 2016-03-03 20:53:41
  • 2448

非负矩阵分解(NMF)

通常的矩阵分解会把一个大的矩阵分解为多个小的矩阵,但是这些矩阵的元素有正有负。而在现实世界中,比如图像,文本 等形成的矩阵中负数的存在是没有意义的,所以如果能把一个矩阵分解成全是非负元素是很有意义的。...
  • ACdreamers
  • ACdreamers
  • 2015-03-27 01:00:45
  • 27730

机器学习(六)非负矩阵分解NMF-未完待续

机器学习(六)非负矩阵分解NMF-未完待续
  • hjimce
  • hjimce
  • 2016-03-10 20:05:56
  • 1647

NMF 非负矩阵分解(Non-negative Matrix Factorization)实践

1. NMF-based 推荐算法在例如Netflix或MovieLens这样的推荐系统中,有用户和电影两个集合。给出每个用户对部分电影的打分,希望预测该用户对其他没看过电影的打分值,这样可以根据打分...
  • qq_26225295
  • qq_26225295
  • 2016-04-16 01:05:28
  • 5154

《Spark机器学习》笔记——Spark应用于数据降维

我们将学习无监督学习模型中降低数据维度的方法。不同于我们之前学习的回归、分类和聚类模型,降维方法并不是用来做模型预测的。降维方法从一个D维的数据输入提取出一个远小于D的k维表示。因此,降维本身是一种预...
  • csj941227
  • csj941227
  • 2018-01-18 20:36:12
  • 164

NMF方法简介和聚类应用

1、NMF方法简介 NMF(Non-negative Matrix Factorization,非负矩阵分解)是一种矩阵分解方法,最早是在1999年Nature杂志刊登的由D.D.Lee和H.S.Se...
  • HappyRocking
  • HappyRocking
  • 2014-12-28 10:37:00
  • 1568

数据降维笔记——非负矩阵分解(NMF),人脸数据特征提取

数据降维——非负矩阵分解(NMF) Non-negative Matrix Factorization,实在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。 NMF能够广泛应用于图像分析、...
  • youyinyou
  • youyinyou
  • 2017-09-21 15:32:42
  • 485

【NMF】用python实现非负矩阵分解

0x00 前言论文阅读理解之—— 《algorithms-for-non-negative-matrix-factorization》 这是一篇网络数据挖掘专业课中,导师推荐阅读的论文,NMF是非...
  • okcd00
  • okcd00
  • 2016-10-29 20:31:27
  • 2819

机器学习笔记(十)降维和度量学习

10.降维和度量学习 10.1k近邻学习 k近邻(k-NearestNeighbor,简称kNN)学习是一种常用的监督学习方法,其原理是:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个...
  • fjssharpsword
  • fjssharpsword
  • 2017-03-29 09:27:47
  • 4556
    个人资料
    持之以恒
    等级:
    访问量: 1万+
    积分: 733
    排名: 7万+
    文章分类
    文章存档
    最新评论