python
文章平均质量分 94
蚊子爱牛牛
等待和希望
展开
-
Python基础:序列
序列:列表 、元组 字符串的统称原创 2017-10-31 20:36:25 · 304 阅读 · 0 评论 -
Python机器学习应用之监督学习-人体运动状态信息评级
背景介绍可穿戴式设备的流行,让我们可以更便利地使用传感器获取人体的各项数据,甚至生理数据。当传感器采集到大量数据后,我们就可以通过对数据进行分析和建模,通过各项特征的数值进行用户状态的判断,根据用户所处的状态提供给用户更加精准、便利的服务。数据介绍我们现在收集了来自A,B,C,D,E 5位用户的可穿戴设备上的传感器数据,每位用户的数据集包含一个特征文件(a.feature)和一...原创 2018-04-20 16:36:20 · 2244 阅读 · 10 评论 -
Python机器学习应用-基于聚类的整图分割
图像分割利用图像的灰度、颜色、纹理、形状等特征,把图像分成若干个互不重叠的区域,并使用这些特征在同一区域内呈现相似性,在不同的区域之间存在明显的差异性。然后就可以将分割的图像中具有独特性质的区域提取出来用于不同的研究。 图像分割技术已在实际生活中得到广泛的应用。例如:在机车检验领域,可以应用到车轱裂纹图像的分割,及时发现裂纹,保证行车安全;在生物医学工程方面,对肝脏CT图像进行分割,为临床治...转载 2018-04-18 21:56:35 · 2154 阅读 · 1 评论 -
Python机器学习应用-聚类之DBSCAN
DBSCAN密度聚类DBSCAN算法是一种基于密度的聚类算法:聚类的时候不需要预先指定簇的个数最终的簇的个数不定DBSCAN算法将数据点分为三类:核心点:在半径Eps内含有超过MinPts数目的点。边界点:在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内。噪声点:既不是核心点也不是边界点的点。 DBSCAN算法流程:将所有点标记为核心点、...转载 2018-04-12 21:02:30 · 1050 阅读 · 0 评论 -
Python机器学习应用-聚类之K-Means
K-Means聚类算法k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。随机选择k个点作为初始的聚类中心。对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。对每个簇,计算所有点的均值作为新的聚类中心。重复2,3直到聚类中心不再发生改变K-means的应用数据介绍:现有1999年全国31个省份城镇居民家庭平...转载 2018-04-12 20:23:17 · 1102 阅读 · 0 评论 -
Python机器学习应用-降维之NMF
非负矩阵分解(NMF)非负矩阵分解(Non-negative Matrix Factorization,NMF)是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。基本思想:给定一个非负矩阵VVV,NMF能够找到一个非负矩阵WWW和一个非负矩阵HHH,使得矩阵WWW和HHH的乘积近似等于矩阵VVV中的值。 Vn∗m=Wn∗k∗Hk∗mVn∗m=Wn∗k∗Hk∗mV_{n*m}...转载 2018-04-17 21:25:49 · 5649 阅读 · 1 评论 -
Python机器学习应用-降维之PCA
主成分分析(PCA)主成分分析(Principal Component Analysis, PCA)是最常用的一种降维方式,通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理。PCA可以把具有相关性的高维变量合成为线性无关的低维变量,称为主成分。主成分能够尽可能保留原始数据的信息。相关术语:方差:是各个样本和样本均值的差的平方和的均值,用来度量一组数据分分散程度。...转载 2018-04-16 21:27:20 · 851 阅读 · 0 评论 -
Python基础:字符串
字符串原创 2017-10-26 11:17:09 · 606 阅读 · 0 评论 -
Python基础:元组
元组:戴上了枷锁的列表。列表可以任意修改其中的元素,非常灵活。而元组是不可以改变的。原创 2017-10-25 17:43:34 · 393 阅读 · 0 评论 -
Python基础:列表
Python中没有数组,但是有一个更为强大—列表。原创 2017-10-25 09:09:04 · 453 阅读 · 0 评论 -
Python基础:函数(一)
函数:完成某部分功能的代码块。原创 2017-11-09 14:41:40 · 458 阅读 · 0 评论 -
Python机器学习应用之监督学习-上证指数涨跌预测实例
数据介绍网易财经上获得的上证指数的历史数据,爬取了150天的上证指数数据。实验目的根据给出当前时间前150天的历史数据,预测当天上证指数的涨跌。技术路线sklearn.svm.SVC实验过程使用算法:SVM1 建立工程,导入sklearn相关包import pandas as pdimport numpy as npfrom sklearn ...原创 2018-08-01 09:22:11 · 2665 阅读 · 0 评论